ETH Price: $2,441.06 (-9.37%)

Contract

0x640dd431E99Ea42c07500274C69Af86F05121374

Overview

ETH Balance

Linea Mainnet LogoLinea Mainnet LogoLinea Mainnet Logo0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

> 10 Internal Transactions found.

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
285130062026-02-01 1:47:323 hrs ago1769910452
0x640dd431...F05121374
0 ETH
284802732026-01-30 22:33:3231 hrs ago1769812412
0x640dd431...F05121374
0 ETH
284448032026-01-29 19:10:382 days ago1769713838
0x640dd431...F05121374
0 ETH
284081312026-01-28 15:52:123 days ago1769615532
0x640dd431...F05121374
0 ETH
283702872026-01-27 12:33:564 days ago1769517236
0x640dd431...F05121374
0 ETH
283287412026-01-26 9:15:285 days ago1769418928
0x640dd431...F05121374
0 ETH
282860462026-01-25 5:57:046 days ago1769320624
0x640dd431...F05121374
0 ETH
282431252026-01-24 2:38:388 days ago1769222318
0x640dd431...F05121374
0 ETH
281981242026-01-22 23:20:129 days ago1769124012
0x640dd431...F05121374
0 ETH
281498072026-01-21 20:01:5810 days ago1769025718
0x640dd431...F05121374
0 ETH
281014552026-01-20 16:43:3011 days ago1768927410
0x640dd431...F05121374
0 ETH
280527042026-01-19 13:25:0012 days ago1768829100
0x640dd431...F05121374
0 ETH
280037852026-01-18 10:06:3413 days ago1768730794
0x640dd431...F05121374
0 ETH
279549372026-01-17 6:48:2214 days ago1768632502
0x640dd431...F05121374
0 ETH
279062492026-01-16 3:29:5416 days ago1768534194
0x640dd431...F05121374
0 ETH
278574642026-01-15 0:11:2817 days ago1768435888
0x640dd431...F05121374
0 ETH
278087132026-01-13 20:53:1018 days ago1768337590
0x640dd431...F05121374
0 ETH
277597532026-01-12 17:34:4419 days ago1768239284
0x640dd431...F05121374
0 ETH
277110192026-01-11 14:16:1820 days ago1768140978
0x640dd431...F05121374
0 ETH
276620642026-01-10 10:57:5421 days ago1768042674
0x640dd431...F05121374
0 ETH
276131532026-01-09 7:39:2622 days ago1767944366
0x640dd431...F05121374
0 ETH
275642952026-01-08 4:20:2624 days ago1767846026
0x640dd431...F05121374
0 ETH
275451072026-01-07 17:36:5824 days ago1767807418
0x640dd431...F05121374
0 ETH
275450962026-01-07 17:36:3624 days ago1767807396
0x640dd431...F05121374
0 ETH
275450842026-01-07 17:36:1224 days ago1767807372
0x640dd431...F05121374
0 ETH
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EthBlockUpdater

Compiler Version
v0.8.14+commit.80d49f37

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.14;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "contracts/interface/IBlockUpdater.sol";
import "contracts/interface/ICircuitVerifierV2.sol";
import "contracts/libraries/ScaleCodec.sol";
import "./MerkleProof.sol";
import "./EthBlockVerifier.sol";
import "./EthLightClientVerifier.sol";

contract EthBlockUpdater is IBlockUpdater, MerkleProof, Initializable, OwnableUpgradeable {
    event ImportSyncCommitteeRoot(uint64 indexed period, bytes32 indexed syncCommitteeRoot);
    event ModBlockConfirmation(uint256 oldBlockConfirmation, uint256 newBlockConfirmation);

    struct SyncCommitteeInput {
        uint64 period;
        bytes32 syncCommitteeRoot;
        bytes32 nextSyncCommitteeRoot;
    }

    struct BlockInput {
        uint64 slot;
        uint256 blockConfirmation;
        bytes32 syncCommitteeRoot;
        bytes32 receiptHash;
        bytes32 blockHash;
    }

    struct SyncCommitteeProof {
        uint256[8] proof;
        uint256[3] inputs;
    }

    struct BlockProof {
        uint256[8] proof;
        uint256[7] inputs;
    }

    struct Chain {
        uint64 slot;
        uint64 proposerIndex;
        bytes32 parentRoot;
        bytes32 stateRoot;
        bytes32 bodyRoot;
        bytes32 domain;
        bytes32 blockHash;
        bytes32 receiptRoot;
        bytes32 payloadHash;
        bytes32[] receiptBranch;
        bytes32[] payloadBranch;
        bytes32[] bodyBranch;
        bytes32[] headerBranch;
        bytes32[] blockHashBranch;
    }

    // period=>syncCommitteeRoot
    mapping(uint64 => bytes32) public syncCommitteeRoots;

    // blockHash=>receiptsRoot =>BlockConfirmation
    mapping(bytes32 => mapping(bytes32 => uint256)) public blockInfos;

    ICircuitVerifierV2 public blockVerifier;

    ICircuitVerifierV2 public lightClientVerifier;

    IBlockUpdater public oldBlockUpdater;

    uint256 public minBlockConfirmation;

    uint64 public currentPeriod;

    function initialize(uint64 period, bytes32 syncCommitteeRoot, uint256 _minBlockConfirmation) public initializer {
        __Ownable_init();
        currentPeriod = period;
        syncCommitteeRoots[period] = syncCommitteeRoot;
        minBlockConfirmation = _minBlockConfirmation;
    }

    function importNextSyncCommittee(bytes calldata _proof) external {
        require(address(lightClientVerifier) != address(0), "Not set committeeVerifier");
        SyncCommitteeProof memory proofData;
        (proofData.proof, proofData.inputs) = abi.decode(_proof, (uint256[8], uint256[3]));
        SyncCommitteeInput memory input = _parseSyncCommitteeInput(proofData.inputs);

        uint64 nextPeriod = input.period + 1;
        require(syncCommitteeRoots[input.period] == input.syncCommitteeRoot, "invalid syncCommitteeRoot");
        require(syncCommitteeRoots[nextPeriod] == bytes32(0), "nextSyncCommitteeRoot already exist");

        uint256[1] memory compressInput;
        compressInput[0] = _hashSyncCommitteeInput(proofData.inputs);
        lightClientVerifier.verifyProof(proofData.proof, compressInput);

        syncCommitteeRoots[nextPeriod] = input.nextSyncCommitteeRoot;
        currentPeriod = nextPeriod;
        emit ImportSyncCommitteeRoot(nextPeriod, input.nextSyncCommitteeRoot);
    }

    function importBlock(bytes calldata _proof) external {
        require(address(blockVerifier) != address(0), "Not set blockVerifier");
        BlockProof memory proofData;
        (proofData.proof, proofData.inputs) = abi.decode(_proof, (uint256[8], uint256[7]));
        BlockInput memory parsedInput = _parseBlockInput(proofData.inputs);

        require(parsedInput.blockConfirmation >= minBlockConfirmation, "Not enough block confirmations");
        (bool exist,uint256 blockConfirmation) = _checkBlock(parsedInput.blockHash, parsedInput.receiptHash);
        if (exist && parsedInput.blockConfirmation <= blockConfirmation) {
            revert("already exist");
        }
        uint64 period = _computePeriod(parsedInput.slot + 1);
        require(syncCommitteeRoots[period] == parsedInput.syncCommitteeRoot, "invalid committeeRoot");

        uint256[1] memory compressInput;
        compressInput[0] = _hashBlockInput(proofData.inputs);
        blockVerifier.verifyProof(proofData.proof, compressInput);

        blockInfos[parsedInput.blockHash][parsedInput.receiptHash] = parsedInput.blockConfirmation;
        emit ImportBlock(parsedInput.slot, parsedInput.blockHash, parsedInput.receiptHash);
    }

    function checkBlock(bytes32 _blockHash, bytes32 _receiptHash) external view returns (bool) {
        (bool exist,) = _checkBlock(_blockHash, _receiptHash);
        return exist;
    }

    function checkBlockConfirmation(bytes32 _blockHash, bytes32 _receiptHash) external view returns (bool, uint256) {
        return _checkBlock(_blockHash, _receiptHash);
    }

    function submitBlockChain(Chain[] calldata blockChains) external {
        require(blockChains.length > 1, "invalid chain length");
        uint256 firstBlockConfirmation;
        for (uint i = 0; i < blockChains.length; i++) {
            Chain memory blockChain = blockChains[i];
            bytes32[] memory leaves = new bytes32[](5);
            leaves[0] = bytes32(_toLittleEndian64(blockChain.slot));
            leaves[1] = bytes32(_toLittleEndian64(blockChain.proposerIndex));
            leaves[2] = blockChain.parentRoot;
            leaves[3] = blockChain.stateRoot;
            leaves[4] = blockChain.bodyRoot;
            bytes32 headerHash = merkleRoot(leaves);
            if (i == 0) {
                (bool exist,uint256 blockConfirmation) = _checkBlock(blockChain.blockHash, blockChain.receiptRoot);
                require(exist, "invalid proof");
                firstBlockConfirmation = blockConfirmation;
            } else {
                require(headerHash == blockChains[i - 1].parentRoot, "invalid proof");
            }
            require(isValidMerkleBranch(blockChain.receiptBranch, blockChain.receiptRoot, blockChain.payloadHash, 3, 5), "invalid receiptBranch");
            require(isValidMerkleBranch(blockChain.payloadBranch, blockChain.payloadHash, blockChain.bodyRoot, 9, 4), "invalid payloadBranch");
            require(isValidMerkleBranch(blockChain.blockHashBranch, blockChain.blockHash, blockChain.payloadHash, 12, 5), "invalid headerBranch");
            if (i != 0) {
                blockInfos[blockChain.blockHash][blockChain.receiptRoot] = firstBlockConfirmation + i;
                emit ImportBlock(blockChain.slot, blockChain.blockHash, blockChain.receiptRoot);
            }
        }
    }

    function _checkBlock(bytes32 _blockHash, bytes32 _receiptHash) internal view returns (bool, uint256) {
        uint256 blockConfirmation = blockInfos[_blockHash][_receiptHash];
        if (blockConfirmation > 0) {
            return (true, blockConfirmation);
        }
        if (address(oldBlockUpdater) != address(0)) {
            if (oldBlockUpdater.checkBlock(_blockHash, _receiptHash)) {
                return (true, minBlockConfirmation);
            }
        }
        return (false, 0);
    }

    function _toLittleEndian64(uint64 value) internal pure returns (bytes8) {
        return ScaleCodec.encode64(value);
    }

    function _parseSyncCommitteeInput(uint256[3] memory _inputs) internal pure returns (SyncCommitteeInput memory) {
        SyncCommitteeInput memory result;
        result.syncCommitteeRoot = bytes32(_inputs[0]);
        result.nextSyncCommitteeRoot = bytes32(_inputs[1]);
        result.period = uint64(_inputs[2]);
        return result;
    }

    function _parseBlockInput(uint256[7] memory _inputs) internal pure returns (BlockInput memory) {
        BlockInput memory result;
        result.slot = uint64(_inputs[0]);
        result.syncCommitteeRoot = bytes32(_inputs[1]);
        result.receiptHash = bytes32((_inputs[2] << 128) | _inputs[3]);
        result.blockHash = bytes32((_inputs[4] << 128) | _inputs[5]);
        result.blockConfirmation = _inputs[6];
        return result;
    }

    function _hashSyncCommitteeInput(uint256[3] memory _inputs) internal pure returns (uint256) {
        uint256 computedHash = uint256(keccak256(abi.encodePacked(_inputs[0], _inputs[1], _inputs[2])));
        return computedHash / 256;
    }

    function _hashBlockInput(uint256[7] memory _inputs) internal pure returns (uint256) {
        uint256 computedHash = uint256(keccak256(abi.encodePacked(_inputs[0], _inputs[1], _inputs[2], _inputs[3], _inputs[4], _inputs[5], _inputs[6])));
        return computedHash / 256;
    }

    function _computePeriod(uint64 slot) internal pure returns (uint64) {
        return slot / 32 / 256;
    }

    //----------------------------------------------------------------------------------
    // onlyOwner
    function setBlockConfirmation(uint256 _minBlockConfirmation) external onlyOwner {
        emit ModBlockConfirmation(minBlockConfirmation, _minBlockConfirmation);
        minBlockConfirmation = _minBlockConfirmation;
    }

    function setOldBlockUpdater(address _oldBlockUpdater) external onlyOwner {
        oldBlockUpdater = IBlockUpdater(_oldBlockUpdater);
    }

    function setBlockVerifier(address _blockVerifier) external onlyOwner {
        require(_blockVerifier != address(0), "Zero address");
        blockVerifier = ICircuitVerifierV2(_blockVerifier);
    }

    function setLightClientVerifier(address _lightClientVerifier) external onlyOwner {
        require(_lightClientVerifier != address(0), "Zero address");
        lightClientVerifier = ICircuitVerifierV2(_lightClientVerifier);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/// @title Groth16 verifier template.
/// @author Remco Bloemen
/// @notice Supports verifying Groth16 proofs. Proofs can be in uncompressed
/// (256 bytes) and compressed (128 bytes) format. A view function is provided
/// to compress proofs.
/// @notice See <https://2π.com/23/bn254-compression> for further explanation.
contract EthBlockVerifier {

    /// Some of the provided public input values are larger than the field modulus.
    /// @dev Public input elements are not automatically reduced, as this is can be
    /// a dangerous source of bugs.
    error PublicInputNotInField();

    /// The proof is invalid.
    /// @dev This can mean that provided Groth16 proof points are not on their
    /// curves, that pairing equation fails, or that the proof is not for the
    /// provided public input.
    error ProofInvalid();

    // Addresses of precompiles
    uint256 constant PRECOMPILE_MODEXP = 0x05;
    uint256 constant PRECOMPILE_ADD = 0x06;
    uint256 constant PRECOMPILE_MUL = 0x07;
    uint256 constant PRECOMPILE_VERIFY = 0x08;

    // Base field Fp order P and scalar field Fr order R.
    // For BN254 these are computed as follows:
    //     t = 4965661367192848881
    //     P = 36⋅t⁴ + 36⋅t³ + 24⋅t² + 6⋅t + 1
    //     R = 36⋅t⁴ + 36⋅t³ + 18⋅t² + 6⋅t + 1
    uint256 constant P = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
    uint256 constant R = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;

    // Extension field Fp2 = Fp[i] / (i² + 1)
    // Note: This is the complex extension field of Fp with i² = -1.
    //       Values in Fp2 are represented as a pair of Fp elements (a₀, a₁) as a₀ + a₁⋅i.
    // Note: The order of Fp2 elements is *opposite* that of the pairing contract, which
    //       expects Fp2 elements in order (a₁, a₀). This is also the order in which
    //       Fp2 elements are encoded in the public interface as this became convention.

    // Constants in Fp
    uint256 constant FRACTION_1_2_FP = 0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea4;
    uint256 constant FRACTION_27_82_FP = 0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5;
    uint256 constant FRACTION_3_82_FP = 0x2fcd3ac2a640a154eb23960892a85a68f031ca0c8344b23a577dcf1052b9e775;

    // Exponents for inversions and square roots mod P
    uint256 constant EXP_INVERSE_FP = 0x30644E72E131A029B85045B68181585D97816A916871CA8D3C208C16D87CFD45; // P - 2
    uint256 constant EXP_SQRT_FP = 0xC19139CB84C680A6E14116DA060561765E05AA45A1C72A34F082305B61F3F52; // (P + 1) / 4;

    // Groth16 alpha point in G1
    uint256 constant ALPHA_X = 18706090515532268669306462660553024134477705920043257579441938818805082009818;
    uint256 constant ALPHA_Y = 17557632119056352457111782472723388037385895044829340323015773143735948735682;

    // Groth16 beta point in G2 in powers of i
    uint256 constant BETA_NEG_X_0 = 13925536520389883470910755942445961965080418120462415389483395736085490403039;
    uint256 constant BETA_NEG_X_1 = 6169318415162071034212937204507408834519962418258944689275533170511816681876;
    uint256 constant BETA_NEG_Y_0 = 15489281818443468872224174890041270186738017124876707539747092246107745429665;
    uint256 constant BETA_NEG_Y_1 = 6685056051900934617572429436072891336591325700487406222922650474634970436574;

    // Groth16 gamma point in G2 in powers of i
    uint256 constant GAMMA_NEG_X_0 = 16114015195043152450696551447003447948971828029095524092253396204890494587387;
    uint256 constant GAMMA_NEG_X_1 = 4186970639836610133950983218006065436689117661780959853486841271289064308452;
    uint256 constant GAMMA_NEG_Y_0 = 16789114681695789940637751169089199660149478008721958118714899722969038953262;
    uint256 constant GAMMA_NEG_Y_1 = 17214119412865344381331019673402639353059424267568972747654789069057196502981;

    // Groth16 delta point in G2 in powers of i
    uint256 constant DELTA_NEG_X_0 = 21018054191429934347907672551581170055135302012240035497978301599004179758263;
    uint256 constant DELTA_NEG_X_1 = 12067267522108993166489302866104010575657811454789713735737049403962484490647;
    uint256 constant DELTA_NEG_Y_0 = 1919516289945285450728027447098381352705383942006962939970882442552264063501;
    uint256 constant DELTA_NEG_Y_1 = 17723683668125034984904748216204304875654955476848842655963497696688775740971;

    // Constant and public input points
    uint256 constant CONSTANT_X = 521757382115963247345430064325460522047585398378853597874094927440142386729;
    uint256 constant CONSTANT_Y = 15607660637548039292193994254175787114108503001424323266277180198330571344892;
    uint256 constant PUB_0_X = 8554846107040077773207564754743092395763523709838222255764878496452908137710;
    uint256 constant PUB_0_Y = 8876272673664821281424442929390789139857632415876403956707375484943867834939;

    /// Negation in Fp.
    /// @notice Returns a number x such that a + x = 0 in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @return x the result
    function negate(uint256 a) internal pure returns (uint256 x) {
    unchecked {
        x = (P - (a % P)) % P; // Modulo is cheaper than branching
    }
    }

    /// Exponentiation in Fp.
    /// @notice Returns a number x such that a ^ e = x in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @param e the exponent
    /// @return x the result
    function exp(uint256 a, uint256 e) internal view returns (uint256 x) {
        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40)
            mstore(f, 0x20)
            mstore(add(f, 0x20), 0x20)
            mstore(add(f, 0x40), 0x20)
            mstore(add(f, 0x60), a)
            mstore(add(f, 0x80), e)
            mstore(add(f, 0xa0), P)
            success := staticcall(gas(), PRECOMPILE_MODEXP, f, 0xc0, f, 0x20)
            x := mload(f)
        }
        if (!success) {
            // Exponentiation failed.
            // Should not happen.
            revert ProofInvalid();
        }
    }

    /// Invertsion in Fp.
    /// @notice Returns a number x such that a * x = 1 in Fp.
    /// @notice The input does not need to be reduced.
    /// @notice Reverts with ProofInvalid() if the inverse does not exist
    /// @param a the input
    /// @return x the solution
    function invert_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_INVERSE_FP);
        if (mulmod(a, x, P) != 1) {
            // Inverse does not exist.
            // Can only happen during G2 point decompression.
            revert ProofInvalid();
        }
    }

    /// Square root in Fp.
    /// @notice Returns a number x such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function sqrt_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_SQRT_FP);
        if (mulmod(x, x, P) != a) {
            // Square root does not exist or a is not reduced.
            // Happens when G1 point is not on curve.
            revert ProofInvalid();
        }
    }

    /// Square test in Fp.
    /// @notice Returns wheter a number x exists such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function isSquare_Fp(uint256 a) internal view returns (bool) {
        uint256 x = exp(a, EXP_SQRT_FP);
        return mulmod(x, x, P) == a;
    }

    /// Square root in Fp2.
    /// @notice Fp2 is the complex extension Fp[i]/(i^2 + 1). The input is
    /// a0 + a1 ⋅ i and the result is x0 + x1 ⋅ i.
    /// @notice Will revert with InvalidProof() if
    ///   * the input is not a square,
    ///   * the hint is incorrect, or
    ///   * the input coefficents are not reduced.
    /// @param a0 The real part of the input.
    /// @param a1 The imaginary part of the input.
    /// @param hint A hint which of two possible signs to pick in the equation.
    /// @return x0 The real part of the square root.
    /// @return x1 The imaginary part of the square root.
    function sqrt_Fp2(uint256 a0, uint256 a1, bool hint) internal view returns (uint256 x0, uint256 x1) {
        // If this square root reverts there is no solution in Fp2.
        uint256 d = sqrt_Fp(addmod(mulmod(a0, a0, P), mulmod(a1, a1, P), P));
        if (hint) {
            d = negate(d);
        }
        // If this square root reverts there is no solution in Fp2.
        x0 = sqrt_Fp(mulmod(addmod(a0, d, P), FRACTION_1_2_FP, P));
        x1 = mulmod(a1, invert_Fp(mulmod(x0, 2, P)), P);

        // Check result to make sure we found a root.
        // Note: this also fails if a0 or a1 is not reduced.
        if (a0 != addmod(mulmod(x0, x0, P), negate(mulmod(x1, x1, P)), P)
            ||  a1 != mulmod(2, mulmod(x0, x1, P), P)) {
            revert ProofInvalid();
        }
    }

    /// Compress a G1 point.
    /// @notice Reverts with InvalidProof if the coordinates are not reduced
    /// or if the point is not on the curve.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param x The X coordinate in Fp.
    /// @param y The Y coordinate in Fp.
    /// @return c The compresed point (x with one signal bit).
    function compress_g1(uint256 x, uint256 y) internal view returns (uint256 c) {
        if (x >= P || y >= P) {
            // G1 point not in field.
            revert ProofInvalid();
        }
        if (x == 0 && y == 0) {
            // Point at infinity
            return 0;
        }

        // Note: sqrt_Fp reverts if there is no solution, i.e. the x coordinate is invalid.
        uint256 y_pos = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (y == y_pos) {
            return (x << 1) | 0;
        } else if (y == negate(y_pos)) {
            return (x << 1) | 1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G1 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param c The compresed point (x with one signal bit).
    /// @return x The X coordinate in Fp.
    /// @return y The Y coordinate in Fp.
    function decompress_g1(uint256 c) internal view returns (uint256 x, uint256 y) {
        // Note that X = 0 is not on the curve since 0³ + 3 = 3 is not a square.
        // so we can use it to represent the point at infinity.
        if (c == 0) {
            // Point at infinity as encoded in EIP196 and EIP197.
            return (0, 0);
        }
        bool negate_point = c & 1 == 1;
        x = c >> 1;
        if (x >= P) {
            // G1 x coordinate not in field.
            revert ProofInvalid();
        }

        // Note: (x³ + 3) is irreducible in Fp, so it can not be zero and therefore
        //       y can not be zero.
        // Note: sqrt_Fp reverts if there is no solution, i.e. the point is not on the curve.
        y = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (negate_point) {
            y = negate(y);
        }
    }

    /// Compress a G2 point.
    /// @notice Reverts with InvalidProof if the coefficients are not reduced
    /// or if the point is not on the curve.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param x0 The real part of the X coordinate.
    /// @param x1 The imaginary poart of the X coordinate.
    /// @param y0 The real part of the Y coordinate.
    /// @param y1 The imaginary part of the Y coordinate.
    /// @return c0 The first half of the compresed point (x0 with two signal bits).
    /// @return c1 The second half of the compressed point (x1 unmodified).
    function compress_g2(uint256 x0, uint256 x1, uint256 y0, uint256 y1)
    internal view returns (uint256 c0, uint256 c1) {
        if (x0 >= P || x1 >= P || y0 >= P || y1 >= P) {
            // G2 point not in field.
            revert ProofInvalid();
        }
        if ((x0 | x1 | y0 | y1) == 0) {
            // Point at infinity
            return (0, 0);
        }

        // Compute y^2
        // Note: shadowing variables and scoping to avoid stack-to-deep.
        uint256 y0_pos;
        uint256 y1_pos;
        {
            uint256 n3ab = mulmod(mulmod(x0, x1, P), P-3, P);
            uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
            uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);
            y0_pos = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
            y1_pos = negate(addmod(FRACTION_3_82_FP,  addmod(b_3, mulmod(n3ab, x0, P), P), P));
        }

        // Determine hint bit
        // If this sqrt fails the x coordinate is not on the curve.
        bool hint;
        {
            uint256 d = sqrt_Fp(addmod(mulmod(y0_pos, y0_pos, P), mulmod(y1_pos, y1_pos, P), P));
            hint = !isSquare_Fp(mulmod(addmod(y0_pos, d, P), FRACTION_1_2_FP, P));
        }

        // Recover y
        (y0_pos, y1_pos) = sqrt_Fp2(y0_pos, y1_pos, hint);
        if (y0 == y0_pos && y1 == y1_pos) {
            c0 = (x0 << 2) | (hint ? 2  : 0) | 0;
            c1 = x1;
        } else if (y0 == negate(y0_pos) && y1 == negate(y1_pos)) {
            c0 = (x0 << 2) | (hint ? 2  : 0) | 1;
            c1 = x1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G2 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param c0 The first half of the compresed point (x0 with two signal bits).
    /// @param c1 The second half of the compressed point (x1 unmodified).
    /// @return x0 The real part of the X coordinate.
    /// @return x1 The imaginary poart of the X coordinate.
    /// @return y0 The real part of the Y coordinate.
    /// @return y1 The imaginary part of the Y coordinate.
    function decompress_g2(uint256 c0, uint256 c1)
    internal view returns (uint256 x0, uint256 x1, uint256 y0, uint256 y1) {
        // Note that X = (0, 0) is not on the curve since 0³ + 3/(9 + i) is not a square.
        // so we can use it to represent the point at infinity.
        if (c0 == 0 && c1 == 0) {
            // Point at infinity as encoded in EIP197.
            return (0, 0, 0, 0);
        }
        bool negate_point = c0 & 1 == 1;
        bool hint = c0 & 2 == 2;
        x0 = c0 >> 2;
        x1 = c1;
        if (x0 >= P || x1 >= P) {
            // G2 x0 or x1 coefficient not in field.
            revert ProofInvalid();
        }

        uint256 n3ab = mulmod(mulmod(x0, x1, P), P-3, P);
        uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
        uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);

        y0 = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
        y1 = negate(addmod(FRACTION_3_82_FP,  addmod(b_3, mulmod(n3ab, x0, P), P), P));

        // Note: sqrt_Fp2 reverts if there is no solution, i.e. the point is not on the curve.
        // Note: (X³ + 3/(9 + i)) is irreducible in Fp2, so y can not be zero.
        //       But y0 or y1 may still independently be zero.
        (y0, y1) = sqrt_Fp2(y0, y1, hint);
        if (negate_point) {
            y0 = negate(y0);
            y1 = negate(y1);
        }
    }

    /// Compute the public input linear combination.
    /// @notice Reverts with PublicInputNotInField if the input is not in the field.
    /// @notice Computes the multi-scalar-multiplication of the public input
    /// elements and the verification key including the constant term.
    /// @param input The public inputs. These are elements of the scalar field Fr.
    /// @return x The X coordinate of the resulting G1 point.
    /// @return y The Y coordinate of the resulting G1 point.
    function publicInputMSM(uint256[1] calldata input)
    internal view returns (uint256 x, uint256 y) {
        // Note: The ECMUL precompile does not reject unreduced values, so we check this.
        // Note: Unrolling this loop does not cost much extra in code-size, the bulk of the
        //       code-size is in the PUB_ constants.
        // ECMUL has input (x, y, scalar) and output (x', y').
        // ECADD has input (x1, y1, x2, y2) and output (x', y').
        // We call them such that ecmul output is already in the second point
        // argument to ECADD so we can have a tight loop.
        bool success = true;
        assembly ("memory-safe") {
            let f := mload(0x40)
            let g := add(f, 0x40)
            let s
            mstore(f, CONSTANT_X)
            mstore(add(f, 0x20), CONSTANT_Y)
            mstore(g, PUB_0_X)
            mstore(add(g, 0x20), PUB_0_Y)
            s :=  calldataload(input)
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            x := mload(f)
            y := mload(add(f, 0x20))
        }
        if (!success) {
            // Either Public input not in field, or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert PublicInputNotInField();
        }
    }

    /// Compress a proof.
    /// @notice Will revert with InvalidProof if the curve points are invalid,
    /// but does not verify the proof itself.
    /// @param proof The uncompressed Groth16 proof. Elements are in the same order as for
    /// verifyProof. I.e. Groth16 points (A, B, C) encoded as in EIP-197.
    /// @return compressed The compressed proof. Elements are in the same order as for
    /// verifyCompressedProof. I.e. points (A, B, C) in compressed format.
    function compressProof(uint256[8] calldata proof)
    public view returns (uint256[4] memory compressed) {
        compressed[0] = compress_g1(proof[0], proof[1]);
        (compressed[2], compressed[1]) = compress_g2(proof[3], proof[2], proof[5], proof[4]);
        compressed[3] = compress_g1(proof[6], proof[7]);
    }

    /// Verify a Groth16 proof with compressed points.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was successfully verified.
    /// @param compressedProof the points (A, B, C) in compressed format
    /// matching the output of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyCompressedProof(
        uint256[4] calldata compressedProof,
        uint256[1] calldata input
    ) public view {
        (uint256 Ax, uint256 Ay) = decompress_g1(compressedProof[0]);
        (uint256 Bx0, uint256 Bx1, uint256 By0, uint256 By1) = decompress_g2(
            compressedProof[2], compressedProof[1]);
        (uint256 Cx, uint256 Cy) = decompress_g1(compressedProof[3]);
        (uint256 Lx, uint256 Ly) = publicInputMSM(input);

        // Verify the pairing
        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.
        uint256[24] memory pairings;
        // e(A, B)
        pairings[ 0] = Ax;
        pairings[ 1] = Ay;
        pairings[ 2] = Bx1;
        pairings[ 3] = Bx0;
        pairings[ 4] = By1;
        pairings[ 5] = By0;
        // e(C, -δ)
        pairings[ 6] = Cx;
        pairings[ 7] = Cy;
        pairings[ 8] = DELTA_NEG_X_1;
        pairings[ 9] = DELTA_NEG_X_0;
        pairings[10] = DELTA_NEG_Y_1;
        pairings[11] = DELTA_NEG_Y_0;
        // e(α, -β)
        pairings[12] = ALPHA_X;
        pairings[13] = ALPHA_Y;
        pairings[14] = BETA_NEG_X_1;
        pairings[15] = BETA_NEG_X_0;
        pairings[16] = BETA_NEG_Y_1;
        pairings[17] = BETA_NEG_Y_0;
        // e(L_pub, -γ)
        pairings[18] = Lx;
        pairings[19] = Ly;
        pairings[20] = GAMMA_NEG_X_1;
        pairings[21] = GAMMA_NEG_X_0;
        pairings[22] = GAMMA_NEG_Y_1;
        pairings[23] = GAMMA_NEG_Y_0;

        // Check pairing equation.
        bool success;
        uint256[1] memory output;
        assembly ("memory-safe") {
            success := staticcall(gas(), PRECOMPILE_VERIFY, pairings, 0x300, output, 0x20)
        }
        if (!success || output[0] != 1) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }

    /// Verify an uncompressed Groth16 proof.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was successfully verified.
    /// @param proof the points (A, B, C) in EIP-197 format matching the output
    /// of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyProof(
        uint256[8] calldata proof,
        uint256[1] calldata input
    ) public view {
        (uint256 x, uint256 y) = publicInputMSM(input);

        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.

        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40) // Free memory pointer.

        // Copy points (A, B, C) to memory. They are already in correct encoding.
        // This is pairing e(A, B) and G1 of e(C, -δ).
            calldatacopy(f, proof, 0x100)

        // Complete e(C, -δ) and write e(α, -β), e(L_pub, -γ) to memory.
        // OPT: This could be better done using a single codecopy, but
        //      Solidity (unlike standalone Yul) doesn't provide a way to
        //      to do this.
            mstore(add(f, 0x100), DELTA_NEG_X_1)
            mstore(add(f, 0x120), DELTA_NEG_X_0)
            mstore(add(f, 0x140), DELTA_NEG_Y_1)
            mstore(add(f, 0x160), DELTA_NEG_Y_0)
            mstore(add(f, 0x180), ALPHA_X)
            mstore(add(f, 0x1a0), ALPHA_Y)
            mstore(add(f, 0x1c0), BETA_NEG_X_1)
            mstore(add(f, 0x1e0), BETA_NEG_X_0)
            mstore(add(f, 0x200), BETA_NEG_Y_1)
            mstore(add(f, 0x220), BETA_NEG_Y_0)
            mstore(add(f, 0x240), x)
            mstore(add(f, 0x260), y)
            mstore(add(f, 0x280), GAMMA_NEG_X_1)
            mstore(add(f, 0x2a0), GAMMA_NEG_X_0)
            mstore(add(f, 0x2c0), GAMMA_NEG_Y_1)
            mstore(add(f, 0x2e0), GAMMA_NEG_Y_0)

        // Check pairing equation.
            success := staticcall(gas(), PRECOMPILE_VERIFY, f, 0x300, f, 0x20)
        // Also check returned value (both are either 1 or 0).
            success := and(success, mload(f))
        }
        if (!success) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/// @title Groth16 verifier template.
/// @author Remco Bloemen
/// @notice Supports verifying Groth16 proofs. Proofs can be in uncompressed
/// (256 bytes) and compressed (128 bytes) format. A view function is provided
/// to compress proofs.
/// @notice See <https://2π.com/23/bn254-compression> for further explanation.
contract EthLightClientVerifier {

    /// Some of the provided public input values are larger than the field modulus.
    /// @dev Public input elements are not automatically reduced, as this is can be
    /// a dangerous source of bugs.
    error PublicInputNotInField();

    /// The proof is invalid.
    /// @dev This can mean that provided Groth16 proof points are not on their
    /// curves, that pairing equation fails, or that the proof is not for the
    /// provided public input.
    error ProofInvalid();

    // Addresses of precompiles
    uint256 constant PRECOMPILE_MODEXP = 0x05;
    uint256 constant PRECOMPILE_ADD = 0x06;
    uint256 constant PRECOMPILE_MUL = 0x07;
    uint256 constant PRECOMPILE_VERIFY = 0x08;

    // Base field Fp order P and scalar field Fr order R.
    // For BN254 these are computed as follows:
    //     t = 4965661367192848881
    //     P = 36⋅t⁴ + 36⋅t³ + 24⋅t² + 6⋅t + 1
    //     R = 36⋅t⁴ + 36⋅t³ + 18⋅t² + 6⋅t + 1
    uint256 constant P = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
    uint256 constant R = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;

    // Extension field Fp2 = Fp[i] / (i² + 1)
    // Note: This is the complex extension field of Fp with i² = -1.
    //       Values in Fp2 are represented as a pair of Fp elements (a₀, a₁) as a₀ + a₁⋅i.
    // Note: The order of Fp2 elements is *opposite* that of the pairing contract, which
    //       expects Fp2 elements in order (a₁, a₀). This is also the order in which
    //       Fp2 elements are encoded in the public interface as this became convention.

    // Constants in Fp
    uint256 constant FRACTION_1_2_FP = 0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea4;
    uint256 constant FRACTION_27_82_FP = 0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5;
    uint256 constant FRACTION_3_82_FP = 0x2fcd3ac2a640a154eb23960892a85a68f031ca0c8344b23a577dcf1052b9e775;

    // Exponents for inversions and square roots mod P
    uint256 constant EXP_INVERSE_FP = 0x30644E72E131A029B85045B68181585D97816A916871CA8D3C208C16D87CFD45; // P - 2
    uint256 constant EXP_SQRT_FP = 0xC19139CB84C680A6E14116DA060561765E05AA45A1C72A34F082305B61F3F52; // (P + 1) / 4;

    // Groth16 alpha point in G1
    uint256 constant ALPHA_X = 13915974525930517690322341382812560344339850691734118749616288831098950058163;
    uint256 constant ALPHA_Y = 13500098445284936478142887888884769993288022215699771563522590287881098936433;

    // Groth16 beta point in G2 in powers of i
    uint256 constant BETA_NEG_X_0 = 3283456248526982517061549611209469236990636628302796304099417261752977679483;
    uint256 constant BETA_NEG_X_1 = 11444070759846841187121133979892214095940328037778046748005841143556161662806;
    uint256 constant BETA_NEG_Y_0 = 37697604019079956554568916303867646163151724622998777428382684960256063635;
    uint256 constant BETA_NEG_Y_1 = 12171818244487606374881326712070217564120863569870573977017655633488982515723;

    // Groth16 gamma point in G2 in powers of i
    uint256 constant GAMMA_NEG_X_0 = 21132860686204535507223204111378929055078534704844414371003925991107858452647;
    uint256 constant GAMMA_NEG_X_1 = 13447347558131306964718391450959658472636090449199444542075711846191141974511;
    uint256 constant GAMMA_NEG_Y_0 = 11459652819867784997308202928253400887378181048793215876397055290057740922467;
    uint256 constant GAMMA_NEG_Y_1 = 19753531265629440704729135782013882807072377249219320616990915011467963588105;

    // Groth16 delta point in G2 in powers of i
    uint256 constant DELTA_NEG_X_0 = 18188378713053789633092635367789801832415451885910071078726991261382582020717;
    uint256 constant DELTA_NEG_X_1 = 1548153404053598897033256107194489389299151595240674537203224032612038968460;
    uint256 constant DELTA_NEG_Y_0 = 15500365996148567969579386470346029547659690931596110579534167164406678713016;
    uint256 constant DELTA_NEG_Y_1 = 3900957038542401124201678561408257427298271286758218567313778016374257094349;

    // Constant and public input points
    uint256 constant CONSTANT_X = 14151862387428222102727873608359289850196001386945258221176944397972818829970;
    uint256 constant CONSTANT_Y = 14757853030521513093138720157949101609941847861763725624086335407141208957451;
    uint256 constant PUB_0_X = 3738918475066631164062891590109399056353393487665051913685917960729048174952;
    uint256 constant PUB_0_Y = 4758214283323418382163439447569281675912465178056842668302208941047387019454;

    /// Negation in Fp.
    /// @notice Returns a number x such that a + x = 0 in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @return x the result
    function negate(uint256 a) internal pure returns (uint256 x) {
    unchecked {
        x = (P - (a % P)) % P; // Modulo is cheaper than branching
    }
    }

    /// Exponentiation in Fp.
    /// @notice Returns a number x such that a ^ e = x in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @param e the exponent
    /// @return x the result
    function exp(uint256 a, uint256 e) internal view returns (uint256 x) {
        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40)
            mstore(f, 0x20)
            mstore(add(f, 0x20), 0x20)
            mstore(add(f, 0x40), 0x20)
            mstore(add(f, 0x60), a)
            mstore(add(f, 0x80), e)
            mstore(add(f, 0xa0), P)
            success := staticcall(gas(), PRECOMPILE_MODEXP, f, 0xc0, f, 0x20)
            x := mload(f)
        }
        if (!success) {
            // Exponentiation failed.
            // Should not happen.
            revert ProofInvalid();
        }
    }

    /// Invertsion in Fp.
    /// @notice Returns a number x such that a * x = 1 in Fp.
    /// @notice The input does not need to be reduced.
    /// @notice Reverts with ProofInvalid() if the inverse does not exist
    /// @param a the input
    /// @return x the solution
    function invert_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_INVERSE_FP);
        if (mulmod(a, x, P) != 1) {
            // Inverse does not exist.
            // Can only happen during G2 point decompression.
            revert ProofInvalid();
        }
    }

    /// Square root in Fp.
    /// @notice Returns a number x such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function sqrt_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_SQRT_FP);
        if (mulmod(x, x, P) != a) {
            // Square root does not exist or a is not reduced.
            // Happens when G1 point is not on curve.
            revert ProofInvalid();
        }
    }

    /// Square test in Fp.
    /// @notice Returns wheter a number x exists such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function isSquare_Fp(uint256 a) internal view returns (bool) {
        uint256 x = exp(a, EXP_SQRT_FP);
        return mulmod(x, x, P) == a;
    }

    /// Square root in Fp2.
    /// @notice Fp2 is the complex extension Fp[i]/(i^2 + 1). The input is
    /// a0 + a1 ⋅ i and the result is x0 + x1 ⋅ i.
    /// @notice Will revert with InvalidProof() if
    ///   * the input is not a square,
    ///   * the hint is incorrect, or
    ///   * the input coefficents are not reduced.
    /// @param a0 The real part of the input.
    /// @param a1 The imaginary part of the input.
    /// @param hint A hint which of two possible signs to pick in the equation.
    /// @return x0 The real part of the square root.
    /// @return x1 The imaginary part of the square root.
    function sqrt_Fp2(uint256 a0, uint256 a1, bool hint) internal view returns (uint256 x0, uint256 x1) {
        // If this square root reverts there is no solution in Fp2.
        uint256 d = sqrt_Fp(addmod(mulmod(a0, a0, P), mulmod(a1, a1, P), P));
        if (hint) {
            d = negate(d);
        }
        // If this square root reverts there is no solution in Fp2.
        x0 = sqrt_Fp(mulmod(addmod(a0, d, P), FRACTION_1_2_FP, P));
        x1 = mulmod(a1, invert_Fp(mulmod(x0, 2, P)), P);

        // Check result to make sure we found a root.
        // Note: this also fails if a0 or a1 is not reduced.
        if (a0 != addmod(mulmod(x0, x0, P), negate(mulmod(x1, x1, P)), P)
            ||  a1 != mulmod(2, mulmod(x0, x1, P), P)) {
            revert ProofInvalid();
        }
    }

    /// Compress a G1 point.
    /// @notice Reverts with InvalidProof if the coordinates are not reduced
    /// or if the point is not on the curve.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param x The X coordinate in Fp.
    /// @param y The Y coordinate in Fp.
    /// @return c The compresed point (x with one signal bit).
    function compress_g1(uint256 x, uint256 y) internal view returns (uint256 c) {
        if (x >= P || y >= P) {
            // G1 point not in field.
            revert ProofInvalid();
        }
        if (x == 0 && y == 0) {
            // Point at infinity
            return 0;
        }

        // Note: sqrt_Fp reverts if there is no solution, i.e. the x coordinate is invalid.
        uint256 y_pos = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (y == y_pos) {
            return (x << 1) | 0;
        } else if (y == negate(y_pos)) {
            return (x << 1) | 1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G1 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param c The compresed point (x with one signal bit).
    /// @return x The X coordinate in Fp.
    /// @return y The Y coordinate in Fp.
    function decompress_g1(uint256 c) internal view returns (uint256 x, uint256 y) {
        // Note that X = 0 is not on the curve since 0³ + 3 = 3 is not a square.
        // so we can use it to represent the point at infinity.
        if (c == 0) {
            // Point at infinity as encoded in EIP196 and EIP197.
            return (0, 0);
        }
        bool negate_point = c & 1 == 1;
        x = c >> 1;
        if (x >= P) {
            // G1 x coordinate not in field.
            revert ProofInvalid();
        }

        // Note: (x³ + 3) is irreducible in Fp, so it can not be zero and therefore
        //       y can not be zero.
        // Note: sqrt_Fp reverts if there is no solution, i.e. the point is not on the curve.
        y = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (negate_point) {
            y = negate(y);
        }
    }

    /// Compress a G2 point.
    /// @notice Reverts with InvalidProof if the coefficients are not reduced
    /// or if the point is not on the curve.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param x0 The real part of the X coordinate.
    /// @param x1 The imaginary poart of the X coordinate.
    /// @param y0 The real part of the Y coordinate.
    /// @param y1 The imaginary part of the Y coordinate.
    /// @return c0 The first half of the compresed point (x0 with two signal bits).
    /// @return c1 The second half of the compressed point (x1 unmodified).
    function compress_g2(uint256 x0, uint256 x1, uint256 y0, uint256 y1)
    internal view returns (uint256 c0, uint256 c1) {
        if (x0 >= P || x1 >= P || y0 >= P || y1 >= P) {
            // G2 point not in field.
            revert ProofInvalid();
        }
        if ((x0 | x1 | y0 | y1) == 0) {
            // Point at infinity
            return (0, 0);
        }

        // Compute y^2
        // Note: shadowing variables and scoping to avoid stack-to-deep.
        uint256 y0_pos;
        uint256 y1_pos;
        {
            uint256 n3ab = mulmod(mulmod(x0, x1, P), P-3, P);
            uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
            uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);
            y0_pos = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
            y1_pos = negate(addmod(FRACTION_3_82_FP,  addmod(b_3, mulmod(n3ab, x0, P), P), P));
        }

        // Determine hint bit
        // If this sqrt fails the x coordinate is not on the curve.
        bool hint;
        {
            uint256 d = sqrt_Fp(addmod(mulmod(y0_pos, y0_pos, P), mulmod(y1_pos, y1_pos, P), P));
            hint = !isSquare_Fp(mulmod(addmod(y0_pos, d, P), FRACTION_1_2_FP, P));
        }

        // Recover y
        (y0_pos, y1_pos) = sqrt_Fp2(y0_pos, y1_pos, hint);
        if (y0 == y0_pos && y1 == y1_pos) {
            c0 = (x0 << 2) | (hint ? 2  : 0) | 0;
            c1 = x1;
        } else if (y0 == negate(y0_pos) && y1 == negate(y1_pos)) {
            c0 = (x0 << 2) | (hint ? 2  : 0) | 1;
            c1 = x1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G2 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param c0 The first half of the compresed point (x0 with two signal bits).
    /// @param c1 The second half of the compressed point (x1 unmodified).
    /// @return x0 The real part of the X coordinate.
    /// @return x1 The imaginary poart of the X coordinate.
    /// @return y0 The real part of the Y coordinate.
    /// @return y1 The imaginary part of the Y coordinate.
    function decompress_g2(uint256 c0, uint256 c1)
    internal view returns (uint256 x0, uint256 x1, uint256 y0, uint256 y1) {
        // Note that X = (0, 0) is not on the curve since 0³ + 3/(9 + i) is not a square.
        // so we can use it to represent the point at infinity.
        if (c0 == 0 && c1 == 0) {
            // Point at infinity as encoded in EIP197.
            return (0, 0, 0, 0);
        }
        bool negate_point = c0 & 1 == 1;
        bool hint = c0 & 2 == 2;
        x0 = c0 >> 2;
        x1 = c1;
        if (x0 >= P || x1 >= P) {
            // G2 x0 or x1 coefficient not in field.
            revert ProofInvalid();
        }

        uint256 n3ab = mulmod(mulmod(x0, x1, P), P-3, P);
        uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
        uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);

        y0 = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
        y1 = negate(addmod(FRACTION_3_82_FP,  addmod(b_3, mulmod(n3ab, x0, P), P), P));

        // Note: sqrt_Fp2 reverts if there is no solution, i.e. the point is not on the curve.
        // Note: (X³ + 3/(9 + i)) is irreducible in Fp2, so y can not be zero.
        //       But y0 or y1 may still independently be zero.
        (y0, y1) = sqrt_Fp2(y0, y1, hint);
        if (negate_point) {
            y0 = negate(y0);
            y1 = negate(y1);
        }
    }

    /// Compute the public input linear combination.
    /// @notice Reverts with PublicInputNotInField if the input is not in the field.
    /// @notice Computes the multi-scalar-multiplication of the public input
    /// elements and the verification key including the constant term.
    /// @param input The public inputs. These are elements of the scalar field Fr.
    /// @return x The X coordinate of the resulting G1 point.
    /// @return y The Y coordinate of the resulting G1 point.
    function publicInputMSM(uint256[1] calldata input)
    internal view returns (uint256 x, uint256 y) {
        // Note: The ECMUL precompile does not reject unreduced values, so we check this.
        // Note: Unrolling this loop does not cost much extra in code-size, the bulk of the
        //       code-size is in the PUB_ constants.
        // ECMUL has input (x, y, scalar) and output (x', y').
        // ECADD has input (x1, y1, x2, y2) and output (x', y').
        // We call them such that ecmul output is already in the second point
        // argument to ECADD so we can have a tight loop.
        bool success = true;
        assembly ("memory-safe") {
            let f := mload(0x40)
            let g := add(f, 0x40)
            let s
            mstore(f, CONSTANT_X)
            mstore(add(f, 0x20), CONSTANT_Y)
            mstore(g, PUB_0_X)
            mstore(add(g, 0x20), PUB_0_Y)
            s :=  calldataload(input)
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            x := mload(f)
            y := mload(add(f, 0x20))
        }
        if (!success) {
            // Either Public input not in field, or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert PublicInputNotInField();
        }
    }

    /// Compress a proof.
    /// @notice Will revert with InvalidProof if the curve points are invalid,
    /// but does not verify the proof itself.
    /// @param proof The uncompressed Groth16 proof. Elements are in the same order as for
    /// verifyProof. I.e. Groth16 points (A, B, C) encoded as in EIP-197.
    /// @return compressed The compressed proof. Elements are in the same order as for
    /// verifyCompressedProof. I.e. points (A, B, C) in compressed format.
    function compressProof(uint256[8] calldata proof)
    public view returns (uint256[4] memory compressed) {
        compressed[0] = compress_g1(proof[0], proof[1]);
        (compressed[2], compressed[1]) = compress_g2(proof[3], proof[2], proof[5], proof[4]);
        compressed[3] = compress_g1(proof[6], proof[7]);
    }

    /// Verify a Groth16 proof with compressed points.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was successfully verified.
    /// @param compressedProof the points (A, B, C) in compressed format
    /// matching the output of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyCompressedProof(
        uint256[4] calldata compressedProof,
        uint256[1] calldata input
    ) public view {
        (uint256 Ax, uint256 Ay) = decompress_g1(compressedProof[0]);
        (uint256 Bx0, uint256 Bx1, uint256 By0, uint256 By1) = decompress_g2(
            compressedProof[2], compressedProof[1]);
        (uint256 Cx, uint256 Cy) = decompress_g1(compressedProof[3]);
        (uint256 Lx, uint256 Ly) = publicInputMSM(input);

        // Verify the pairing
        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.
        uint256[24] memory pairings;
        // e(A, B)
        pairings[ 0] = Ax;
        pairings[ 1] = Ay;
        pairings[ 2] = Bx1;
        pairings[ 3] = Bx0;
        pairings[ 4] = By1;
        pairings[ 5] = By0;
        // e(C, -δ)
        pairings[ 6] = Cx;
        pairings[ 7] = Cy;
        pairings[ 8] = DELTA_NEG_X_1;
        pairings[ 9] = DELTA_NEG_X_0;
        pairings[10] = DELTA_NEG_Y_1;
        pairings[11] = DELTA_NEG_Y_0;
        // e(α, -β)
        pairings[12] = ALPHA_X;
        pairings[13] = ALPHA_Y;
        pairings[14] = BETA_NEG_X_1;
        pairings[15] = BETA_NEG_X_0;
        pairings[16] = BETA_NEG_Y_1;
        pairings[17] = BETA_NEG_Y_0;
        // e(L_pub, -γ)
        pairings[18] = Lx;
        pairings[19] = Ly;
        pairings[20] = GAMMA_NEG_X_1;
        pairings[21] = GAMMA_NEG_X_0;
        pairings[22] = GAMMA_NEG_Y_1;
        pairings[23] = GAMMA_NEG_Y_0;

        // Check pairing equation.
        bool success;
        uint256[1] memory output;
        assembly ("memory-safe") {
            success := staticcall(gas(), PRECOMPILE_VERIFY, pairings, 0x300, output, 0x20)
        }
        if (!success || output[0] != 1) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }

    /// Verify an uncompressed Groth16 proof.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was successfully verified.
    /// @param proof the points (A, B, C) in EIP-197 format matching the output
    /// of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyProof(
        uint256[8] calldata proof,
        uint256[1] calldata input
    ) public view {
        (uint256 x, uint256 y) = publicInputMSM(input);

        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.

        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40) // Free memory pointer.

        // Copy points (A, B, C) to memory. They are already in correct encoding.
        // This is pairing e(A, B) and G1 of e(C, -δ).
            calldatacopy(f, proof, 0x100)

        // Complete e(C, -δ) and write e(α, -β), e(L_pub, -γ) to memory.
        // OPT: This could be better done using a single codecopy, but
        //      Solidity (unlike standalone Yul) doesn't provide a way to
        //      to do this.
            mstore(add(f, 0x100), DELTA_NEG_X_1)
            mstore(add(f, 0x120), DELTA_NEG_X_0)
            mstore(add(f, 0x140), DELTA_NEG_Y_1)
            mstore(add(f, 0x160), DELTA_NEG_Y_0)
            mstore(add(f, 0x180), ALPHA_X)
            mstore(add(f, 0x1a0), ALPHA_Y)
            mstore(add(f, 0x1c0), BETA_NEG_X_1)
            mstore(add(f, 0x1e0), BETA_NEG_X_0)
            mstore(add(f, 0x200), BETA_NEG_Y_1)
            mstore(add(f, 0x220), BETA_NEG_Y_0)
            mstore(add(f, 0x240), x)
            mstore(add(f, 0x260), y)
            mstore(add(f, 0x280), GAMMA_NEG_X_1)
            mstore(add(f, 0x2a0), GAMMA_NEG_X_0)
            mstore(add(f, 0x2c0), GAMMA_NEG_Y_1)
            mstore(add(f, 0x2e0), GAMMA_NEG_Y_0)

        // Check pairing equation.
            success := staticcall(gas(), PRECOMPILE_VERIFY, f, 0x300, f, 0x20)
        // Also check returned value (both are either 1 or 0).
            success := and(success, mload(f))
        }
        if (!success) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Math {
    /// Get the power of 2 for given input, or the closest higher power of 2 if the input is not a power of 2.
    /// Commonly used for "how many nodes do I need for a bottom tree layer fitting x elements?"
    /// Example: 0->1, 1->1, 2->2, 3->4, 4->4, 5->8, 6->8, 7->8, 8->8, 9->16.
    function getPowerOfTwoCeil(uint256 x) internal pure returns (uint256) {
        if (x <= 1) return 1;
        else if (x == 2) return 2;
        uint256 nextX = (x + 1) >> 1;
        uint256 powerOfTwoCeil = getPowerOfTwoCeil(nextX);
        if (powerOfTwoCeil > (type(uint256).max >> 1)) {
            revert("overflow");
        }
        return 2 * powerOfTwoCeil;
    }

    function log_2(uint256 x) internal pure returns (uint256 pow) {
        require(0 < x && x < 0x8000000000000000000000000000000000000000000000000000000000000001, "invalid");
        uint256 a = 1;
        while (a < x) {
            a <<= 1;
            pow++;
        }
    }

    function _max(uint x, uint y) internal pure returns (uint z) {
        return x >= y ? x : y;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./Math.sol";

contract MerkleProof is Math {
    // Check if ``leaf`` at ``index`` verifies against the Merkle ``root`` and ``branch``.
    function isValidMerkleBranch(
        bytes32[] memory branch,
        bytes32 leaf,
        bytes32 root,
        uint64 index,
        uint64 depth
    ) internal pure returns (bool) {
        bytes32 value = leaf;
        for (uint i = 0; i < depth; ++i) {
            if ((index / (2 ** i)) % 2 == 1) {
                value = hashNode(branch[i], value);
            } else {
                value = hashNode(value, branch[i]);
            }
        }
        return value == root;
    }

    function merkleRoot(bytes32[] memory leaves) internal pure returns (bytes32) {
        uint len = leaves.length;
        if (len == 0) return bytes32(0);
        else if (len == 1) return hash(abi.encodePacked(leaves[0]));
        else if (len == 2) return hashNode(leaves[0], leaves[1]);
        uint bottomLength = getPowerOfTwoCeil(len);
        bytes32[] memory o = new bytes32[](bottomLength * 2);
        for (uint i = 0; i < len; ++i) {
            o[bottomLength + i] = leaves[i];
        }
        for (uint i = bottomLength - 1; i > 0; --i) {
            o[i] = hashNode(o[i * 2], o[i * 2 + 1]);
        }
        return o[1];
    }


    function hashNode(bytes32 left, bytes32 right)
    internal
    pure
    returns (bytes32)
    {
        return hash(abi.encodePacked(left, right));
    }

    function hash(bytes memory value) internal pure returns (bytes32) {
        return sha256(value);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IBlockUpdater {
    event ImportBlock(uint256 identifier, bytes32 blockHash, bytes32 receiptHash);

    function importBlock(bytes calldata _proof) external;

    function checkBlock(bytes32 _blockHash, bytes32 _receiptsRoot) external view returns (bool);

    function checkBlockConfirmation(bytes32 _blockHash, bytes32 _receiptsRoot) external view returns (bool, uint256);
}

File 11 of 12 : ICircuitVerifierV2.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;


interface ICircuitVerifierV2 {
    function verifyProof(
        uint256[8] memory proof,
        uint256[1] memory input
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library ScaleCodec {
    // Decodes a SCALE encoded uint256 by converting bytes (bid endian) to little endian format
    function decodeUint256(bytes memory data) internal pure returns (uint256) {
        uint256 number;
        for (uint256 i = data.length; i > 0; i--) {
            number = number + uint256(uint8(data[i - 1])) * (2**(8 * (i - 1)));
        }
        return number;
    }

    // Decodes a SCALE encoded compact unsigned integer
    function decodeUintCompact(bytes memory data)
        internal
        pure
        returns (uint256 v)
    {
        uint8 b = readByteAtIndex(data, 0); // read the first byte
        uint8 mode = b & 3; // bitwise operation

        if (mode == 0) {
            // [0, 63]
            return b >> 2; // right shift to remove mode bits
        } else if (mode == 1) {
            // [64, 16383]
            uint8 bb = readByteAtIndex(data, 1); // read the second byte
            uint64 r = bb; // convert to uint64
            r <<= 6; // multiply by * 2^6
            r += b >> 2; // right shift to remove mode bits
            return r;
        } else if (mode == 2) {
            // [16384, 1073741823]
            uint8 b2 = readByteAtIndex(data, 1); // read the next 3 bytes
            uint8 b3 = readByteAtIndex(data, 2);
            uint8 b4 = readByteAtIndex(data, 3);

            uint32 x1 = uint32(b) | (uint32(b2) << 8); // convert to little endian
            uint32 x2 = x1 | (uint32(b3) << 16);
            uint32 x3 = x2 | (uint32(b4) << 24);

            x3 >>= 2; // remove the last 2 mode bits
            return uint256(x3);
        } else if (mode == 3) {
            // [1073741824, 4503599627370496]
            // solhint-disable-next-line
            uint8 l = b >> 2; // remove mode bits
            require(
                l > 32,
                "Not supported: number cannot be greater than 32 bytes"
            );
        } else {
            revert("Code should be unreachable");
        }
    }

    // Read a byte at a specific index and return it as type uint8
    function readByteAtIndex(bytes memory data, uint8 index)
        internal
        pure
        returns (uint8)
    {
        return uint8(data[index]);
    }

    // Sources:
    //   * https://ethereum.stackexchange.com/questions/15350/how-to-convert-an-bytes-to-address-in-solidity/50528
    //   * https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel

    function reverse256(uint256 input) internal pure returns (uint256 v) {
        v = input;

        // swap bytes
        v = ((v & 0xFF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((v & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);

        // swap 2-byte long pairs
        v = ((v & 0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((v & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);

        // swap 4-byte long pairs
        v = ((v & 0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((v & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);

        // swap 8-byte long pairs
        v = ((v & 0xFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF0000000000000000) >> 64) |
            ((v & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);

        // swap 16-byte long pairs
        v = (v >> 128) | (v << 128);
    }

    function reverse128(uint128 input) internal pure returns (uint128 v) {
        v = input;

        // swap bytes
        v = ((v & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((v & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);

        // swap 2-byte long pairs
        v = ((v & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((v & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);

        // swap 4-byte long pairs
        v = ((v & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((v & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);

        // swap 8-byte long pairs
        v = (v >> 64) | (v << 64);
    }

    function reverse64(uint64 input) internal pure returns (uint64 v) {
        v = input;

        // swap bytes
        v = ((v & 0xFF00FF00FF00FF00) >> 8) |
            ((v & 0x00FF00FF00FF00FF) << 8);

        // swap 2-byte long pairs
        v = ((v & 0xFFFF0000FFFF0000) >> 16) |
            ((v & 0x0000FFFF0000FFFF) << 16);

        // swap 4-byte long pairs
        v = (v >> 32) | (v << 32);
    }

    function reverse32(uint32 input) internal pure returns (uint32 v) {
        v = input;

        // swap bytes
        v = ((v & 0xFF00FF00) >> 8) |
            ((v & 0x00FF00FF) << 8);

        // swap 2-byte long pairs
        v = (v >> 16) | (v << 16);
    }

    function reverse16(uint16 input) internal pure returns (uint16 v) {
        v = input;

        // swap bytes
        v = (v >> 8) | (v << 8);
    }

    function encode256(uint256 input) internal pure returns (bytes32) {
        return bytes32(reverse256(input));
    }

    function encode128(uint128 input) internal pure returns (bytes16) {
        return bytes16(reverse128(input));
    }

    function encode64(uint64 input) internal pure returns (bytes8) {
        return bytes8(reverse64(input));
    }

    function encode32(uint32 input) internal pure returns (bytes4) {
        return bytes4(reverse32(input));
    }

    function encode16(uint16 input) internal pure returns (bytes2) {
        return bytes2(reverse16(input));
    }

    function encode8(uint8 input) internal pure returns (bytes1) {
        return bytes1(input);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"identifier","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"receiptHash","type":"bytes32"}],"name":"ImportBlock","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"period","type":"uint64"},{"indexed":true,"internalType":"bytes32","name":"syncCommitteeRoot","type":"bytes32"}],"name":"ImportSyncCommitteeRoot","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldBlockConfirmation","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBlockConfirmation","type":"uint256"}],"name":"ModBlockConfirmation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"blockInfos","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blockVerifier","outputs":[{"internalType":"contract ICircuitVerifierV2","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_blockHash","type":"bytes32"},{"internalType":"bytes32","name":"_receiptHash","type":"bytes32"}],"name":"checkBlock","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_blockHash","type":"bytes32"},{"internalType":"bytes32","name":"_receiptHash","type":"bytes32"}],"name":"checkBlockConfirmation","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentPeriod","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_proof","type":"bytes"}],"name":"importBlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"_proof","type":"bytes"}],"name":"importNextSyncCommittee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"period","type":"uint64"},{"internalType":"bytes32","name":"syncCommitteeRoot","type":"bytes32"},{"internalType":"uint256","name":"_minBlockConfirmation","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lightClientVerifier","outputs":[{"internalType":"contract ICircuitVerifierV2","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minBlockConfirmation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oldBlockUpdater","outputs":[{"internalType":"contract IBlockUpdater","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minBlockConfirmation","type":"uint256"}],"name":"setBlockConfirmation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_blockVerifier","type":"address"}],"name":"setBlockVerifier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_lightClientVerifier","type":"address"}],"name":"setLightClientVerifier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oldBlockUpdater","type":"address"}],"name":"setOldBlockUpdater","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"slot","type":"uint64"},{"internalType":"uint64","name":"proposerIndex","type":"uint64"},{"internalType":"bytes32","name":"parentRoot","type":"bytes32"},{"internalType":"bytes32","name":"stateRoot","type":"bytes32"},{"internalType":"bytes32","name":"bodyRoot","type":"bytes32"},{"internalType":"bytes32","name":"domain","type":"bytes32"},{"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"internalType":"bytes32","name":"receiptRoot","type":"bytes32"},{"internalType":"bytes32","name":"payloadHash","type":"bytes32"},{"internalType":"bytes32[]","name":"receiptBranch","type":"bytes32[]"},{"internalType":"bytes32[]","name":"payloadBranch","type":"bytes32[]"},{"internalType":"bytes32[]","name":"bodyBranch","type":"bytes32[]"},{"internalType":"bytes32[]","name":"headerBranch","type":"bytes32[]"},{"internalType":"bytes32[]","name":"blockHashBranch","type":"bytes32[]"}],"internalType":"struct EthBlockUpdater.Chain[]","name":"blockChains","type":"tuple[]"}],"name":"submitBlockChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"","type":"uint64"}],"name":"syncCommitteeRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b506120d2806100206000396000f3fe608060405234801561001057600080fd5b506004361061012c5760003560e01c80638da5cb5b116100ad578063a9ef31de11610071578063a9ef31de146102c2578063dc3588ea146102cb578063e7e18e6a146102ee578063f2fde38b14610301578063ffcdd7911461031457600080fd5b80638da5cb5b146102655780639d0167e714610276578063a4f2b42f14610289578063a58593d71461029c578063a83a163a146102af57600080fd5b806334797d2d116100f457806334797d2d146101ec57806336fbafad1461021757806337d8c73f1461022a57806360c7ec4d1461024a578063715018a61461025d57600080fd5b806302952ab614610131578063060406181461016f5780631bf4864e1461019a578063254252af146101af57806329b9a327146101d9575b600080fd5b61015c61013f366004611810565b606660209081526000928352604080842090915290825290205481565b6040519081526020015b60405180910390f35b606b54610182906001600160401b031681565b6040516001600160401b039091168152602001610166565b6101ad6101a8366004611832565b610327565b005b6101c26101bd366004611810565b610351565b604080519215158352602083019190915201610166565b6101ad6101e7366004611832565b61036a565b6068546101ff906001600160a01b031681565b6040516001600160a01b039091168152602001610166565b6101ad61022536600461185b565b6103de565b61015c6102383660046118e8565b60656020526000908152604090205481565b6101ad61025836600461185b565b610713565b6101ad6109a5565b6033546001600160a01b03166101ff565b6101ad610284366004611903565b6109b9565b6069546101ff906001600160a01b031681565b6101ad6102aa366004611832565b610a02565b6101ad6102bd36600461191c565b610a71565b61015c606a5481565b6102de6102d9366004611810565b610e9b565b6040519015158152602001610166565b6067546101ff906001600160a01b031681565b6101ad61030f366004611832565b610eb3565b6101ad61032236600461197e565b610f2c565b61032f611074565b606980546001600160a01b0319166001600160a01b0392909216919091179055565b60008061035e84846110ce565b915091505b9250929050565b610372611074565b6001600160a01b0381166103bc5760405162461bcd60e51b815260206004820152600c60248201526b5a65726f206164647265737360a01b60448201526064015b60405180910390fd5b606880546001600160a01b0319166001600160a01b0392909216919091179055565b6067546001600160a01b031661042e5760405162461bcd60e51b81526020600482015260156024820152742737ba1039b2ba10313637b1b5ab32b934b334b2b960591b60448201526064016103b3565b610436611752565b61044282840184611a5d565b60208381018290529183526040805160a080820183526000808352828601819052828401819052606080840182905260809384018290528451808401865282815280880183815281870184815282840185815283880195865289516001600160401b031684529989015190529187015195870151851b909517909652908401518285015190921b909117905260c09091015191829052606a549091101561052b5760405162461bcd60e51b815260206004820152601e60248201527f4e6f7420656e6f75676820626c6f636b20636f6e6669726d6174696f6e73000060448201526064016103b3565b600080610540836080015184606001516110ce565b91509150818015610555575080836020015111155b156105925760405162461bcd60e51b815260206004820152600d60248201526c185b1c9958591e48195e1a5cdd609a1b60448201526064016103b3565b82516000906105ab906105a6906001611b06565b6111a0565b6040808601516001600160401b038316600090815260656020529190912054919250146106125760405162461bcd60e51b81526020600482015260156024820152741a5b9d985b1a590818dbdb5b5a5d1d1959549bdbdd605a1b60448201526064016103b3565b61061a611777565b61062786602001516111ba565b81526067548651604051631b81f82960e01b81526001600160a01b0390921691631b81f8299161065b918590600401611b47565b600060405180830381600087803b15801561067557600080fd5b505af1158015610689573d6000803e3d6000fd5b5050505060208581015160808701805160009081526066845260408082206060808c0180518552918752928290209490945589519251935181516001600160401b03909416845294830193909352918101929092527fa3fa2e60f4d1c7f6bd60da77a4be0625773dfb6b22c54fe77e725d03e49cdf2e910160405180910390a15050505050505050565b6068546001600160a01b031661076b5760405162461bcd60e51b815260206004820152601960248201527f4e6f742073657420636f6d6d697474656556657269666965720000000000000060448201526064016103b3565b610773611795565b61077f82840184611ba5565b602083810182905291835260408051606080820183526000808352828601819052918301829052825190810183528181528085018281528184018381528551909152948401519094529101516001600160401b03168083526107e2906001611b06565b60208084015184516001600160401b031660009081526065909252604090912054919250146108535760405162461bcd60e51b815260206004820152601960248201527f696e76616c69642073796e63436f6d6d6974746565526f6f740000000000000060448201526064016103b3565b6001600160401b038116600090815260656020526040902054156108c55760405162461bcd60e51b815260206004820152602360248201527f6e65787453796e63436f6d6d6974746565526f6f7420616c72656164792065786044820152621a5cdd60ea1b60648201526084016103b3565b6108cd611777565b6108da846020015161123f565b81526068548451604051631b81f82960e01b81526001600160a01b0390921691631b81f8299161090e918590600401611b47565b600060405180830381600087803b15801561092857600080fd5b505af115801561093c573d6000803e3d6000fd5b50505050604083810180516001600160401b0385166000818152606560205284812092909255606b805467ffffffffffffffff191682179055915192517f03dade1449e74ef0ed2f8c41d2c4d6207976b68dfe52fda91c0f040491d95cb39190a3505050505050565b6109ad611074565b6109b7600061126e565b565b6109c1611074565b606a5460408051918252602082018390527f5ab2642364d92dafb2be757706f004ccf8325cca566bc2d0742133d316a5eaed910160405180910390a1606a55565b610a0a611074565b6001600160a01b038116610a4f5760405162461bcd60e51b815260206004820152600c60248201526b5a65726f206164647265737360a01b60448201526064016103b3565b606780546001600160a01b0319166001600160a01b0392909216919091179055565b60018111610ab85760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840c6d0c2d2dc40d8cadccee8d60631b60448201526064016103b3565b6000805b82811015610e95576000848483818110610ad857610ad8611b31565b9050602002810190610aea9190611bf8565b610af390611cb3565b60408051600580825260c08201909252919250600091906020820160a080368337019050509050610b2782600001516112c0565b6001600160c01b03191681600081518110610b4457610b44611b31565b602002602001018181525050610b5d82602001516112c0565b6001600160c01b03191681600181518110610b7a57610b7a611b31565b602002602001018181525050816040015181600281518110610b9e57610b9e611b31565b602002602001018181525050816060015181600381518110610bc257610bc2611b31565b602002602001018181525050816080015181600481518110610be657610be6611b31565b6020026020010181815250506000610bfd82611329565b905083600003610c6657600080610c1c8560c001518660e001516110ce565b9150915081610c5d5760405162461bcd60e51b815260206004820152600d60248201526c34b73b30b634b210383937b7b360991b60448201526064016103b3565b9550610cd69050565b8686610c73600187611e09565b818110610c8257610c82611b31565b9050602002810190610c949190611bf8565b604001358114610cd65760405162461bcd60e51b815260206004820152600d60248201526c34b73b30b634b210383937b7b360991b60448201526064016103b3565b610cf38361012001518460e0015185610100015160036005611544565b610d375760405162461bcd60e51b81526020600482015260156024820152740d2dcecc2d8d2c840e4cac6cad2e0e884e4c2dcc6d605b1b60448201526064016103b3565b610d54836101400151846101000151856080015160096004611544565b610d985760405162461bcd60e51b81526020600482015260156024820152740d2dcecc2d8d2c840e0c2f2d8dec2c884e4c2dcc6d605b1b60448201526064016103b3565b610db5836101a001518460c00151856101000151600c6005611544565b610df85760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840d0cac2c8cae484e4c2dcc6d60631b60448201526064016103b3565b8315610e7f57610e088486611e20565b60c084018051600090815260666020908152604080832060e0890180518552908352928190209490945586519251915184516001600160401b039094168452908301919091528183015290517fa3fa2e60f4d1c7f6bd60da77a4be0625773dfb6b22c54fe77e725d03e49cdf2e9181900360600190a15b5050508080610e8d90611e38565b915050610abc565b50505050565b600080610ea884846110ce565b509150505b92915050565b610ebb611074565b6001600160a01b038116610f205760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016103b3565b610f298161126e565b50565b600054610100900460ff1615808015610f4c5750600054600160ff909116105b80610f665750303b158015610f66575060005460ff166001145b610fc95760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084016103b3565b6000805460ff191660011790558015610fec576000805461ff0019166101001790555b610ff46115ea565b606b805467ffffffffffffffff19166001600160401b0386169081179091556000908152606560205260409020839055606a8290558015610e95576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150505050565b6033546001600160a01b031633146109b75760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103b3565b6000828152606660209081526040808320848452909152812054819080156110fb57600192509050610363565b6069546001600160a01b03161561119357606954604051636e1ac47560e11b815260048101879052602481018690526001600160a01b039091169063dc3588ea90604401602060405180830381865afa15801561115c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111809190611e51565b15611193575050606a5460019150610363565b5060009485945092505050565b60006101006111b0602084611e89565b610ead9190611e89565b805160208083015160408085015160608087015160808089015160a0808b015160c0808d015189519b8c019c909c52978a01989098529388019490945286015284015282015260e08101919091526000908190610100015b60408051601f198184030181529190528051602090910120905061123861010082611eaf565b9392505050565b805160208083015160408085015181519384019490945282015260608101919091526000908190608001611212565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600065ff000000ff00600883811b91821664ff000000ff9185901c91821617601090811b67ff000000ff0000009390931666ff000000ff00009290921691909117901c17602081811b6bffffffffffffffff000000001691901c63ffffffff161760c01b610ead565b805160009080820361133e5750600092915050565b8060010361138a576112388360008151811061135c5761135c611b31565b602002602001015160405160200161137691815260200190565b604051602081830303815290604052611619565b806002036113d057611238836000815181106113a8576113a8611b31565b6020026020010151846001815181106113c3576113c3611b31565b602002602001015161166b565b60006113db8261168c565b905060006113ea826002611ec3565b6001600160401b03811115611401576114016119b1565b60405190808252806020026020018201604052801561142a578160200160208202803683370190505b50905060005b8381101561148a5785818151811061144a5761144a611b31565b602002602001015182828561145f9190611e20565b8151811061146f5761146f611b31565b602090810291909101015261148381611e38565b9050611430565b506000611498600184611e09565b90505b801561151e576114f1826114b0836002611ec3565b815181106114c0576114c0611b31565b6020026020010151838360026114d69190611ec3565b6114e1906001611e20565b815181106113c3576113c3611b31565b82828151811061150357611503611b31565b602090810291909101015261151781611ee2565b905061149b565b508060018151811061153257611532611b31565b60200260200101519350505050919050565b600084815b836001600160401b03168110156115dd5760026115668282611fdd565b611579906001600160401b038816611eaf565b6115839190611fe9565b6001036115b4576115ad88828151811061159f5761159f611b31565b60200260200101518361166b565b91506115cd565b6115ca828983815181106113c3576113c3611b31565b91505b6115d681611e38565b9050611549565b5090931495945050505050565b600054610100900460ff166116115760405162461bcd60e51b81526004016103b390611ffd565b6109b7611722565b600060028260405161162b9190612048565b602060405180830381855afa158015611648573d6000803e3d6000fd5b5050506040513d601f19601f82011682018060405250810190610ead9190612083565b60006112388383604051602001611376929190918252602082015260400190565b60006001821161169e57506001919050565b816002036116ae57506002919050565b600060016116bc8482611e20565b901c905060006116cb8261168c565b90506001600160ff1b0381111561170f5760405162461bcd60e51b81526020600482015260086024820152676f766572666c6f7760c01b60448201526064016103b3565b61171a816002611ec3565b949350505050565b600054610100900460ff166117495760405162461bcd60e51b81526004016103b390611ffd565b6109b73361126e565b60405180604001604052806117656117b5565b81526020016117726117d4565b905290565b60405180602001604052806001906020820280368337509192915050565b60405180604001604052806117a86117b5565b81526020016117726117f2565b6040518061010001604052806008906020820280368337509192915050565b6040518060e001604052806007906020820280368337509192915050565b60405180606001604052806003906020820280368337509192915050565b6000806040838503121561182357600080fd5b50508035926020909101359150565b60006020828403121561184457600080fd5b81356001600160a01b038116811461123857600080fd5b6000806020838503121561186e57600080fd5b82356001600160401b038082111561188557600080fd5b818501915085601f83011261189957600080fd5b8135818111156118a857600080fd5b8660208285010111156118ba57600080fd5b60209290920196919550909350505050565b80356001600160401b03811681146118e357600080fd5b919050565b6000602082840312156118fa57600080fd5b611238826118cc565b60006020828403121561191557600080fd5b5035919050565b6000806020838503121561192f57600080fd5b82356001600160401b038082111561194657600080fd5b818501915085601f83011261195a57600080fd5b81358181111561196957600080fd5b8660208260051b85010111156118ba57600080fd5b60008060006060848603121561199357600080fd5b61199c846118cc565b95602085013595506040909401359392505050565b634e487b7160e01b600052604160045260246000fd5b6040516101c081016001600160401b03811182821017156119ea576119ea6119b1565b60405290565b600082601f830112611a0157600080fd5b6040516101008082018281106001600160401b0382111715611a2557611a256119b1565b60405283018185821115611a3857600080fd5b845b82811015611a52578035825260209182019101611a3a565b509195945050505050565b6000806101e0808486031215611a7257600080fd5b611a7c85856119f0565b92508461011f850112611a8e57600080fd5b60405160e081018181106001600160401b0382111715611ab057611ab06119b1565b604052908401908086831115611ac557600080fd5b61010086015b83811015611ae3578035825260209182019101611acb565b5093969095509350505050565b634e487b7160e01b600052601160045260246000fd5b60006001600160401b03808316818516808303821115611b2857611b28611af0565b01949350505050565b634e487b7160e01b600052603260045260246000fd5b6101208101818460005b6008811015611b70578151835260209283019290910190600101611b51565b50505061010082018360005b6001811015611b9b578151835260209283019290910190600101611b7c565b5050509392505050565b600080610160808486031215611bba57600080fd5b611bc485856119f0565b92508461011f850112611bd657600080fd5b604051606081018181106001600160401b0382111715611ab057611ab06119b1565b600082356101be19833603018112611c0f57600080fd5b9190910192915050565b600082601f830112611c2a57600080fd5b813560206001600160401b0380831115611c4657611c466119b1565b8260051b604051601f19603f83011681018181108482111715611c6b57611c6b6119b1565b604052938452858101830193838101925087851115611c8957600080fd5b83870191505b84821015611ca857813583529183019190830190611c8f565b979650505050505050565b60006101c08236031215611cc657600080fd5b611cce6119c7565b611cd7836118cc565b8152611ce5602084016118cc565b602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c082015260e083013560e0820152610100808401358183015250610120808401356001600160401b0380821115611d4e57600080fd5b611d5a36838801611c19565b83850152610140925082860135915080821115611d7657600080fd5b611d8236838801611c19565b83850152610160925082860135915080821115611d9e57600080fd5b611daa36838801611c19565b83850152610180925082860135915080821115611dc657600080fd5b611dd236838801611c19565b838501526101a0925082860135915080821115611dee57600080fd5b50611dfb36828701611c19565b918301919091525092915050565b600082821015611e1b57611e1b611af0565b500390565b60008219821115611e3357611e33611af0565b500190565b600060018201611e4a57611e4a611af0565b5060010190565b600060208284031215611e6357600080fd5b8151801515811461123857600080fd5b634e487b7160e01b600052601260045260246000fd5b60006001600160401b0380841680611ea357611ea3611e73565b92169190910492915050565b600082611ebe57611ebe611e73565b500490565b6000816000190483118215151615611edd57611edd611af0565b500290565b600081611ef157611ef1611af0565b506000190190565b600181815b80851115611f34578160001904821115611f1a57611f1a611af0565b80851615611f2757918102915b93841c9390800290611efe565b509250929050565b600082611f4b57506001610ead565b81611f5857506000610ead565b8160018114611f6e5760028114611f7857611f94565b6001915050610ead565b60ff841115611f8957611f89611af0565b50506001821b610ead565b5060208310610133831016604e8410600b8410161715611fb7575081810a610ead565b611fc18383611ef9565b8060001904821115611fd557611fd5611af0565b029392505050565b60006112388383611f3c565b600082611ff857611ff8611e73565b500690565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b6000825160005b81811015612069576020818601810151858301520161204f565b81811115612078576000828501525b509190910192915050565b60006020828403121561209557600080fd5b505191905056fea264697066735822122008ef00fcfdcd1df1b70830e94d48fbd9c71f1b5060608490e60349c50048d50b64736f6c634300080e0033

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061012c5760003560e01c80638da5cb5b116100ad578063a9ef31de11610071578063a9ef31de146102c2578063dc3588ea146102cb578063e7e18e6a146102ee578063f2fde38b14610301578063ffcdd7911461031457600080fd5b80638da5cb5b146102655780639d0167e714610276578063a4f2b42f14610289578063a58593d71461029c578063a83a163a146102af57600080fd5b806334797d2d116100f457806334797d2d146101ec57806336fbafad1461021757806337d8c73f1461022a57806360c7ec4d1461024a578063715018a61461025d57600080fd5b806302952ab614610131578063060406181461016f5780631bf4864e1461019a578063254252af146101af57806329b9a327146101d9575b600080fd5b61015c61013f366004611810565b606660209081526000928352604080842090915290825290205481565b6040519081526020015b60405180910390f35b606b54610182906001600160401b031681565b6040516001600160401b039091168152602001610166565b6101ad6101a8366004611832565b610327565b005b6101c26101bd366004611810565b610351565b604080519215158352602083019190915201610166565b6101ad6101e7366004611832565b61036a565b6068546101ff906001600160a01b031681565b6040516001600160a01b039091168152602001610166565b6101ad61022536600461185b565b6103de565b61015c6102383660046118e8565b60656020526000908152604090205481565b6101ad61025836600461185b565b610713565b6101ad6109a5565b6033546001600160a01b03166101ff565b6101ad610284366004611903565b6109b9565b6069546101ff906001600160a01b031681565b6101ad6102aa366004611832565b610a02565b6101ad6102bd36600461191c565b610a71565b61015c606a5481565b6102de6102d9366004611810565b610e9b565b6040519015158152602001610166565b6067546101ff906001600160a01b031681565b6101ad61030f366004611832565b610eb3565b6101ad61032236600461197e565b610f2c565b61032f611074565b606980546001600160a01b0319166001600160a01b0392909216919091179055565b60008061035e84846110ce565b915091505b9250929050565b610372611074565b6001600160a01b0381166103bc5760405162461bcd60e51b815260206004820152600c60248201526b5a65726f206164647265737360a01b60448201526064015b60405180910390fd5b606880546001600160a01b0319166001600160a01b0392909216919091179055565b6067546001600160a01b031661042e5760405162461bcd60e51b81526020600482015260156024820152742737ba1039b2ba10313637b1b5ab32b934b334b2b960591b60448201526064016103b3565b610436611752565b61044282840184611a5d565b60208381018290529183526040805160a080820183526000808352828601819052828401819052606080840182905260809384018290528451808401865282815280880183815281870184815282840185815283880195865289516001600160401b031684529989015190529187015195870151851b909517909652908401518285015190921b909117905260c09091015191829052606a549091101561052b5760405162461bcd60e51b815260206004820152601e60248201527f4e6f7420656e6f75676820626c6f636b20636f6e6669726d6174696f6e73000060448201526064016103b3565b600080610540836080015184606001516110ce565b91509150818015610555575080836020015111155b156105925760405162461bcd60e51b815260206004820152600d60248201526c185b1c9958591e48195e1a5cdd609a1b60448201526064016103b3565b82516000906105ab906105a6906001611b06565b6111a0565b6040808601516001600160401b038316600090815260656020529190912054919250146106125760405162461bcd60e51b81526020600482015260156024820152741a5b9d985b1a590818dbdb5b5a5d1d1959549bdbdd605a1b60448201526064016103b3565b61061a611777565b61062786602001516111ba565b81526067548651604051631b81f82960e01b81526001600160a01b0390921691631b81f8299161065b918590600401611b47565b600060405180830381600087803b15801561067557600080fd5b505af1158015610689573d6000803e3d6000fd5b5050505060208581015160808701805160009081526066845260408082206060808c0180518552918752928290209490945589519251935181516001600160401b03909416845294830193909352918101929092527fa3fa2e60f4d1c7f6bd60da77a4be0625773dfb6b22c54fe77e725d03e49cdf2e910160405180910390a15050505050505050565b6068546001600160a01b031661076b5760405162461bcd60e51b815260206004820152601960248201527f4e6f742073657420636f6d6d697474656556657269666965720000000000000060448201526064016103b3565b610773611795565b61077f82840184611ba5565b602083810182905291835260408051606080820183526000808352828601819052918301829052825190810183528181528085018281528184018381528551909152948401519094529101516001600160401b03168083526107e2906001611b06565b60208084015184516001600160401b031660009081526065909252604090912054919250146108535760405162461bcd60e51b815260206004820152601960248201527f696e76616c69642073796e63436f6d6d6974746565526f6f740000000000000060448201526064016103b3565b6001600160401b038116600090815260656020526040902054156108c55760405162461bcd60e51b815260206004820152602360248201527f6e65787453796e63436f6d6d6974746565526f6f7420616c72656164792065786044820152621a5cdd60ea1b60648201526084016103b3565b6108cd611777565b6108da846020015161123f565b81526068548451604051631b81f82960e01b81526001600160a01b0390921691631b81f8299161090e918590600401611b47565b600060405180830381600087803b15801561092857600080fd5b505af115801561093c573d6000803e3d6000fd5b50505050604083810180516001600160401b0385166000818152606560205284812092909255606b805467ffffffffffffffff191682179055915192517f03dade1449e74ef0ed2f8c41d2c4d6207976b68dfe52fda91c0f040491d95cb39190a3505050505050565b6109ad611074565b6109b7600061126e565b565b6109c1611074565b606a5460408051918252602082018390527f5ab2642364d92dafb2be757706f004ccf8325cca566bc2d0742133d316a5eaed910160405180910390a1606a55565b610a0a611074565b6001600160a01b038116610a4f5760405162461bcd60e51b815260206004820152600c60248201526b5a65726f206164647265737360a01b60448201526064016103b3565b606780546001600160a01b0319166001600160a01b0392909216919091179055565b60018111610ab85760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840c6d0c2d2dc40d8cadccee8d60631b60448201526064016103b3565b6000805b82811015610e95576000848483818110610ad857610ad8611b31565b9050602002810190610aea9190611bf8565b610af390611cb3565b60408051600580825260c08201909252919250600091906020820160a080368337019050509050610b2782600001516112c0565b6001600160c01b03191681600081518110610b4457610b44611b31565b602002602001018181525050610b5d82602001516112c0565b6001600160c01b03191681600181518110610b7a57610b7a611b31565b602002602001018181525050816040015181600281518110610b9e57610b9e611b31565b602002602001018181525050816060015181600381518110610bc257610bc2611b31565b602002602001018181525050816080015181600481518110610be657610be6611b31565b6020026020010181815250506000610bfd82611329565b905083600003610c6657600080610c1c8560c001518660e001516110ce565b9150915081610c5d5760405162461bcd60e51b815260206004820152600d60248201526c34b73b30b634b210383937b7b360991b60448201526064016103b3565b9550610cd69050565b8686610c73600187611e09565b818110610c8257610c82611b31565b9050602002810190610c949190611bf8565b604001358114610cd65760405162461bcd60e51b815260206004820152600d60248201526c34b73b30b634b210383937b7b360991b60448201526064016103b3565b610cf38361012001518460e0015185610100015160036005611544565b610d375760405162461bcd60e51b81526020600482015260156024820152740d2dcecc2d8d2c840e4cac6cad2e0e884e4c2dcc6d605b1b60448201526064016103b3565b610d54836101400151846101000151856080015160096004611544565b610d985760405162461bcd60e51b81526020600482015260156024820152740d2dcecc2d8d2c840e0c2f2d8dec2c884e4c2dcc6d605b1b60448201526064016103b3565b610db5836101a001518460c00151856101000151600c6005611544565b610df85760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840d0cac2c8cae484e4c2dcc6d60631b60448201526064016103b3565b8315610e7f57610e088486611e20565b60c084018051600090815260666020908152604080832060e0890180518552908352928190209490945586519251915184516001600160401b039094168452908301919091528183015290517fa3fa2e60f4d1c7f6bd60da77a4be0625773dfb6b22c54fe77e725d03e49cdf2e9181900360600190a15b5050508080610e8d90611e38565b915050610abc565b50505050565b600080610ea884846110ce565b509150505b92915050565b610ebb611074565b6001600160a01b038116610f205760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016103b3565b610f298161126e565b50565b600054610100900460ff1615808015610f4c5750600054600160ff909116105b80610f665750303b158015610f66575060005460ff166001145b610fc95760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084016103b3565b6000805460ff191660011790558015610fec576000805461ff0019166101001790555b610ff46115ea565b606b805467ffffffffffffffff19166001600160401b0386169081179091556000908152606560205260409020839055606a8290558015610e95576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150505050565b6033546001600160a01b031633146109b75760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103b3565b6000828152606660209081526040808320848452909152812054819080156110fb57600192509050610363565b6069546001600160a01b03161561119357606954604051636e1ac47560e11b815260048101879052602481018690526001600160a01b039091169063dc3588ea90604401602060405180830381865afa15801561115c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111809190611e51565b15611193575050606a5460019150610363565b5060009485945092505050565b60006101006111b0602084611e89565b610ead9190611e89565b805160208083015160408085015160608087015160808089015160a0808b015160c0808d015189519b8c019c909c52978a01989098529388019490945286015284015282015260e08101919091526000908190610100015b60408051601f198184030181529190528051602090910120905061123861010082611eaf565b9392505050565b805160208083015160408085015181519384019490945282015260608101919091526000908190608001611212565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600065ff000000ff00600883811b91821664ff000000ff9185901c91821617601090811b67ff000000ff0000009390931666ff000000ff00009290921691909117901c17602081811b6bffffffffffffffff000000001691901c63ffffffff161760c01b610ead565b805160009080820361133e5750600092915050565b8060010361138a576112388360008151811061135c5761135c611b31565b602002602001015160405160200161137691815260200190565b604051602081830303815290604052611619565b806002036113d057611238836000815181106113a8576113a8611b31565b6020026020010151846001815181106113c3576113c3611b31565b602002602001015161166b565b60006113db8261168c565b905060006113ea826002611ec3565b6001600160401b03811115611401576114016119b1565b60405190808252806020026020018201604052801561142a578160200160208202803683370190505b50905060005b8381101561148a5785818151811061144a5761144a611b31565b602002602001015182828561145f9190611e20565b8151811061146f5761146f611b31565b602090810291909101015261148381611e38565b9050611430565b506000611498600184611e09565b90505b801561151e576114f1826114b0836002611ec3565b815181106114c0576114c0611b31565b6020026020010151838360026114d69190611ec3565b6114e1906001611e20565b815181106113c3576113c3611b31565b82828151811061150357611503611b31565b602090810291909101015261151781611ee2565b905061149b565b508060018151811061153257611532611b31565b60200260200101519350505050919050565b600084815b836001600160401b03168110156115dd5760026115668282611fdd565b611579906001600160401b038816611eaf565b6115839190611fe9565b6001036115b4576115ad88828151811061159f5761159f611b31565b60200260200101518361166b565b91506115cd565b6115ca828983815181106113c3576113c3611b31565b91505b6115d681611e38565b9050611549565b5090931495945050505050565b600054610100900460ff166116115760405162461bcd60e51b81526004016103b390611ffd565b6109b7611722565b600060028260405161162b9190612048565b602060405180830381855afa158015611648573d6000803e3d6000fd5b5050506040513d601f19601f82011682018060405250810190610ead9190612083565b60006112388383604051602001611376929190918252602082015260400190565b60006001821161169e57506001919050565b816002036116ae57506002919050565b600060016116bc8482611e20565b901c905060006116cb8261168c565b90506001600160ff1b0381111561170f5760405162461bcd60e51b81526020600482015260086024820152676f766572666c6f7760c01b60448201526064016103b3565b61171a816002611ec3565b949350505050565b600054610100900460ff166117495760405162461bcd60e51b81526004016103b390611ffd565b6109b73361126e565b60405180604001604052806117656117b5565b81526020016117726117d4565b905290565b60405180602001604052806001906020820280368337509192915050565b60405180604001604052806117a86117b5565b81526020016117726117f2565b6040518061010001604052806008906020820280368337509192915050565b6040518060e001604052806007906020820280368337509192915050565b60405180606001604052806003906020820280368337509192915050565b6000806040838503121561182357600080fd5b50508035926020909101359150565b60006020828403121561184457600080fd5b81356001600160a01b038116811461123857600080fd5b6000806020838503121561186e57600080fd5b82356001600160401b038082111561188557600080fd5b818501915085601f83011261189957600080fd5b8135818111156118a857600080fd5b8660208285010111156118ba57600080fd5b60209290920196919550909350505050565b80356001600160401b03811681146118e357600080fd5b919050565b6000602082840312156118fa57600080fd5b611238826118cc565b60006020828403121561191557600080fd5b5035919050565b6000806020838503121561192f57600080fd5b82356001600160401b038082111561194657600080fd5b818501915085601f83011261195a57600080fd5b81358181111561196957600080fd5b8660208260051b85010111156118ba57600080fd5b60008060006060848603121561199357600080fd5b61199c846118cc565b95602085013595506040909401359392505050565b634e487b7160e01b600052604160045260246000fd5b6040516101c081016001600160401b03811182821017156119ea576119ea6119b1565b60405290565b600082601f830112611a0157600080fd5b6040516101008082018281106001600160401b0382111715611a2557611a256119b1565b60405283018185821115611a3857600080fd5b845b82811015611a52578035825260209182019101611a3a565b509195945050505050565b6000806101e0808486031215611a7257600080fd5b611a7c85856119f0565b92508461011f850112611a8e57600080fd5b60405160e081018181106001600160401b0382111715611ab057611ab06119b1565b604052908401908086831115611ac557600080fd5b61010086015b83811015611ae3578035825260209182019101611acb565b5093969095509350505050565b634e487b7160e01b600052601160045260246000fd5b60006001600160401b03808316818516808303821115611b2857611b28611af0565b01949350505050565b634e487b7160e01b600052603260045260246000fd5b6101208101818460005b6008811015611b70578151835260209283019290910190600101611b51565b50505061010082018360005b6001811015611b9b578151835260209283019290910190600101611b7c565b5050509392505050565b600080610160808486031215611bba57600080fd5b611bc485856119f0565b92508461011f850112611bd657600080fd5b604051606081018181106001600160401b0382111715611ab057611ab06119b1565b600082356101be19833603018112611c0f57600080fd5b9190910192915050565b600082601f830112611c2a57600080fd5b813560206001600160401b0380831115611c4657611c466119b1565b8260051b604051601f19603f83011681018181108482111715611c6b57611c6b6119b1565b604052938452858101830193838101925087851115611c8957600080fd5b83870191505b84821015611ca857813583529183019190830190611c8f565b979650505050505050565b60006101c08236031215611cc657600080fd5b611cce6119c7565b611cd7836118cc565b8152611ce5602084016118cc565b602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c082015260e083013560e0820152610100808401358183015250610120808401356001600160401b0380821115611d4e57600080fd5b611d5a36838801611c19565b83850152610140925082860135915080821115611d7657600080fd5b611d8236838801611c19565b83850152610160925082860135915080821115611d9e57600080fd5b611daa36838801611c19565b83850152610180925082860135915080821115611dc657600080fd5b611dd236838801611c19565b838501526101a0925082860135915080821115611dee57600080fd5b50611dfb36828701611c19565b918301919091525092915050565b600082821015611e1b57611e1b611af0565b500390565b60008219821115611e3357611e33611af0565b500190565b600060018201611e4a57611e4a611af0565b5060010190565b600060208284031215611e6357600080fd5b8151801515811461123857600080fd5b634e487b7160e01b600052601260045260246000fd5b60006001600160401b0380841680611ea357611ea3611e73565b92169190910492915050565b600082611ebe57611ebe611e73565b500490565b6000816000190483118215151615611edd57611edd611af0565b500290565b600081611ef157611ef1611af0565b506000190190565b600181815b80851115611f34578160001904821115611f1a57611f1a611af0565b80851615611f2757918102915b93841c9390800290611efe565b509250929050565b600082611f4b57506001610ead565b81611f5857506000610ead565b8160018114611f6e5760028114611f7857611f94565b6001915050610ead565b60ff841115611f8957611f89611af0565b50506001821b610ead565b5060208310610133831016604e8410600b8410161715611fb7575081810a610ead565b611fc18383611ef9565b8060001904821115611fd557611fd5611af0565b029392505050565b60006112388383611f3c565b600082611ff857611ff8611e73565b500690565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b6000825160005b81811015612069576020818601810151858301520161204f565b81811115612078576000828501525b509190910192915050565b60006020828403121561209557600080fd5b505191905056fea264697066735822122008ef00fcfdcd1df1b70830e94d48fbd9c71f1b5060608490e60349c50048d50b64736f6c634300080e0033

Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.