Source Code
Overview
ETH Balance
ETH Value
$0.00Latest 1 from a total of 1 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Setup Vault | 26111820 | 58 days ago | IN | 0 ETH | 0.00000969 |
Latest 19 internal transactions
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH | ||||
| 26111820 | 58 days ago | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
VaultSetup
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {PreDepositVault} from "src/PreDepositVault.sol";
import {LineaBridgeRelayer} from "src/bridge/LineaBridgeRelayer.sol";
import {IPreDepositVault} from "src/interfaces/IPreDepositVault.sol";
/// @title VaultSetup
/// @notice Lightweight contract to batch all setup calls in a single transaction
/// @dev Deployments happen in script, this just wires everything together
contract VaultSetup {
address public immutable deployer;
bool private _setupComplete;
error Unauthorized();
error AlreadySetup();
constructor() {
deployer = msg.sender;
}
function setupVault(
address vault,
address bridge,
address admin,
uint256 minDeposit,
uint256 maxDeposit,
uint256 maxTotalAssets
) external {
if (msg.sender != deployer) revert Unauthorized();
if (_setupComplete) revert AlreadySetup();
_setupComplete = true;
PreDepositVault v = PreDepositVault(vault);
LineaBridgeRelayer b = LineaBridgeRelayer(payable(bridge));
// Wire contracts
b.setVaultAllowed(vault, true);
v.setBridge(bridge);
v.setDepositLimits(IPreDepositVault.DepositLimits(minDeposit, maxDeposit, maxTotalAssets));
// Transfer vault roles
v.grantRole(v.DEFAULT_ADMIN_ROLE(), admin);
v.grantRole(v.ADMIN_ROLE(), admin);
v.renounceRole(v.DEFAULT_ADMIN_ROLE(), address(this));
v.renounceRole(v.ADMIN_ROLE(), address(this));
// Transfer bridge roles
b.grantRole(b.DEFAULT_ADMIN_ROLE(), admin);
b.grantRole(b.CONFIG_ROLE(), admin);
b.renounceRole(b.DEFAULT_ADMIN_ROLE(), address(this));
b.renounceRole(b.CONFIG_ROLE(), address(this));
}
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {IPreDepositVault} from "./interfaces/IPreDepositVault.sol";
import {IStrategy} from "./interfaces/IStrategy.sol";
import {IBridgeRelayer} from "./interfaces/IBridgeRelayer.sol";
/// @notice This is a pre-deposit vault that accumulates users' deposits into strategy,
/// then later on, withdraws from strategy, bridges them to L2 and allows users
/// to withdraw funds on L2.
/// The flow:
/// 1. Contract is deployed with `depositsEnabled: false, withdrawalsEnabled: false`.
/// 2. Admin turns on deposits.
/// 3. Users deposit assets.
/// 4. Admin turns off deposits.
/// 5. Admin initiates and completes withdrawal from strategy.
/// 6. Admin bridges assets to L2.
/// 7. Admin turns on withdrawals.
/// 8. Users withdraw.
contract PreDepositVault is ERC4626, AccessControl, Pausable, ReentrancyGuard, IPreDepositVault {
using SafeERC20 for IERC20;
using Math for uint256;
// Role constants
bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
// Max withdrawal cooldown period admin can set.
uint32 public constant MAX_WITHDRAWAL_COOLDOWN = 5 days;
// Vault state enum
enum VaultState {
INITIAL, // 0: Initial state, no operations allowed
DEPOSITS, // 1: Only deposits allowed
STRATEGY_WITHDRAWAL, // 2: Withdrawal from strategy
BRIDGING, // 3: Bridging assets to L2
WITHDRAWALS // 4: Only withdrawals(claims) allowed on L2
}
// State variables
VaultState private currentState;
uint32 public withdrawalCooldown;
IStrategy public immutable STRATEGY;
IBridgeRelayer public bridge;
uint256 public l2PrincipalBalance;
uint256 public receivedFromStrategy;
uint256 public sentToStrategy;
DepositLimits private depositLimits;
mapping(address => uint256) public lastWithdrawalTime;
constructor(
IERC20 _asset,
string memory _name,
string memory _symbol,
address _admin,
IStrategy _strategy,
uint32 _withdrawalCooldown
) ERC4626(_asset) ERC20(_name, _symbol) {
_grantRole(DEFAULT_ADMIN_ROLE, _admin);
_grantRole(ADMIN_ROLE, _admin);
STRATEGY = _strategy;
_setWithdrawalCooldown(_withdrawalCooldown);
}
modifier checkState(VaultState expectedState) virtual {
if (!isStateValid(expectedState)) {
revert InvalidState();
}
_;
}
// Admin functions
/// @inheritdoc IPreDepositVault
function advanceState(uint8 newState) public virtual onlyRole(ADMIN_ROLE) {
if (currentState == type(VaultState).max) revert InvalidState();
currentState = VaultState(uint8(currentState) + 1);
if (newState != uint8(currentState)) revert InvalidState();
emit StateAdvanced(uint8(currentState));
}
/// @notice Sets the vault state in emergency situations (only when paused)
/// @param newState The new state to set the vault to
function emergencySetState(uint8 newState) public virtual whenPaused onlyRole(ADMIN_ROLE) {
currentState = VaultState(newState);
emit StateAdvanced(uint8(currentState));
}
/// @inheritdoc IPreDepositVault
function setBridge(address newBridge) public virtual override onlyRole(ADMIN_ROLE) {
bridge = IBridgeRelayer(newBridge);
emit BridgeUpdated(newBridge);
}
/// @inheritdoc IPreDepositVault
function setDepositLimits(DepositLimits calldata _limits)
public
virtual
override
onlyRole(ADMIN_ROLE)
{
// state must be either initial or deposits.
if (!isStateValid(VaultState.DEPOSITS) && !isStateValid(VaultState.INITIAL)) {
revert InvalidState();
}
if (_limits.minDepositAmount > _limits.maxDepositAmount) revert InvalidAmount();
if (_limits.maxTotalAssets < _limits.maxDepositAmount) revert InvalidAmount();
depositLimits = _limits;
emit DepositLimitsUpdated(_limits);
}
/// @notice Pauses the vault
function pause() public onlyRole(ADMIN_ROLE) {
_pause();
}
/// @notice Unpauses the vault
function unpause() public onlyRole(ADMIN_ROLE) {
_unpause();
}
/// @inheritdoc IPreDepositVault
function setWithdrawalCooldown(uint32 newCooldown) public virtual override onlyRole(ADMIN_ROLE) {
_setWithdrawalCooldown(newCooldown);
}
/// @notice Internal function to set the withdrawal cooldown
/// @param newCooldown The new cooldown period in seconds
function _setWithdrawalCooldown(uint32 newCooldown) internal {
if (newCooldown > MAX_WITHDRAWAL_COOLDOWN) revert InvalidAmount();
withdrawalCooldown = newCooldown;
emit WithdrawalCooldownUpdated(newCooldown);
}
/// @inheritdoc IPreDepositVault
function initiateStrategyWithdrawal()
external
override
whenNotPaused
onlyRole(ADMIN_ROLE)
nonReentrant
checkState(VaultState.STRATEGY_WITHDRAWAL)
{
if (address(STRATEGY) == address(0)) revert InvalidState();
// Strategy holds no assets, nothing to withdraw from it.
if (STRATEGY.totalAssets() == 0) revert InvalidState();
if (STRATEGY.hasPendingWithdrawal()) revert InvalidState();
uint256 balanceBefore = IERC20(asset()).balanceOf(address(this));
STRATEGY.withdrawAll();
uint256 balanceAfter = IERC20(asset()).balanceOf(address(this));
uint256 netReceived = balanceAfter - balanceBefore;
// If no deposits occur after a strategy withdrawal but the strategy
// still gains tokens outside the vault, another withdrawal initiation
// should be permitted. Hence, we use +=. This value resets to 0
// once bridging occurs.
receivedFromStrategy += netReceived;
if (STRATEGY.hasPendingWithdrawal()) {
emit StrategyWithdrawalInitiated(address(STRATEGY), netReceived);
}
}
/// @inheritdoc IPreDepositVault
function completeStrategyWithdrawal()
external
override
whenNotPaused
onlyRole(ADMIN_ROLE)
nonReentrant
checkState(VaultState.STRATEGY_WITHDRAWAL)
{
if (address(STRATEGY) == address(0)) revert InvalidState();
if (!STRATEGY.hasPendingWithdrawal()) return;
uint256 balanceBefore = IERC20(asset()).balanceOf(address(this));
STRATEGY.completeWithdrawal();
uint256 balanceAfter = IERC20(asset()).balanceOf(address(this));
uint256 netReceived = balanceAfter - balanceBefore;
// If no deposits occur after a strategy withdrawal but the strategy
// still gains tokens outside the vault, another withdrawal initiation
// should be permitted. Hence, we use +=. This value resets to 0
// once bridging occurs.
receivedFromStrategy += netReceived;
emit StrategyDeallocation(address(STRATEGY), netReceived);
}
/// @inheritdoc IPreDepositVault
function bridgeAssetsToL2(address l2PrincipalReceiver, address l2YieldReceiver)
external
override
whenNotPaused
onlyRole(ADMIN_ROLE)
nonReentrant
checkState(VaultState.BRIDGING)
{
// Verify we're in bridging state
if (address(STRATEGY) != address(0) && STRATEGY.hasPendingWithdrawal()) revert InvalidState();
uint256 vaultBalance = availableAssets();
uint256 totalPrincipalToBridge;
if (address(STRATEGY) != address(0)) {
totalPrincipalToBridge = Math.min(sentToStrategy, receivedFromStrategy);
} else {
totalPrincipalToBridge = vaultBalance;
}
if (totalPrincipalToBridge > 0) {
_bridge(l2PrincipalReceiver, totalPrincipalToBridge);
l2PrincipalBalance += totalPrincipalToBridge;
}
// If there's any left, bridge to yield.
uint256 remainingBalance = availableAssets();
if (remainingBalance > 0) {
// If both addresses are same, that means yield also
// goes to the same L2 address, hence increase l2PrincipalBalance
// so users can withdraw gains as well. see `_withdraw`.
if (l2PrincipalReceiver == l2YieldReceiver) {
l2PrincipalBalance += remainingBalance;
}
_bridge(l2YieldReceiver, remainingBalance);
}
// The entire amount received from the strategy is bridged;
// reset the value to 0 after the bridging process completes.
receivedFromStrategy = 0;
sentToStrategy = 0;
}
/// @notice Internal helper function that bridges assets
/// @param receiver The address on target chain that will be able to claim the assets
/// @param amountToBridge The amount to bridge
function _bridge(address receiver, uint256 amountToBridge) internal virtual {
if (receiver == address(0)) revert InvalidAddress();
IERC20(asset()).approve(address(bridge), amountToBridge);
bytes32 bridgeRequestId = bridge.bridgeAssets(asset(), amountToBridge, receiver);
emit AssetsBridgedToL2(bridgeRequestId, amountToBridge, receiver);
}
/*//////////////////////////////////////////////////////////////
ERC4626 OVERRIDDEN LOGIC
//////////////////////////////////////////////////////////////*/
/// @inheritdoc ERC4626
/// @dev If deposits are disabled, `mint/deposit` will fail with max exceed errors. See
/// `ERC4626` and overriden implementation of `maxMint/maxDeposit` in this contract.
function _deposit(address caller, address receiver, uint256 assets, uint256 shares)
internal
virtual
override
{
_requireNotPaused();
(uint256 minDepositAmount, uint256 maxDepositAmount, uint256 maxTotalAssets) =
getDepositLimits();
if (assets == 0 || assets < minDepositAmount || assets > maxDepositAmount) {
revert InvalidAmount();
}
if (totalAssets() + assets > maxTotalAssets) revert InsufficientBalance();
super._deposit(caller, receiver, assets, shares);
// Call the strategy to process the deposit
if (address(STRATEGY) != address(0)) {
uint256 available = availableAssets();
if (available > 0) {
// Some tokens (e.g., USDT) revert on approve() if allowance != 0.
// Strategy may not consume full allowance, so use forceApprove to reset before approving.
IERC20(asset()).forceApprove(address(STRATEGY), available);
uint256 allocated = STRATEGY.allocate(available);
sentToStrategy += allocated;
emit StrategyAllocation(address(STRATEGY), allocated);
}
}
}
/// @inheritdoc ERC4626
/// @dev If withdrawals are disabled, `withdraw/redeem` will fail with
/// max exceed errors. For more, See `ERC4626` and overriden
/// implementation of `maxRedeem/maxWithdraw` in this contract.
/// This is a ERC4626 overriden function that can not be payable
/// which is needed in case bridge fees required > 0. To avoid
/// users spamming withdrawal with small amounts, causing protocol
/// funds to drain from relayer, it implements cooldown mechanism
/// per owner. If `owner` approves multiple users, one user
/// can block other users from withdrawing if using ERC4626 `withdraw`.
/// If that's the case, refer to `withdrawWithPayable`.
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual override {
_requireNotPaused();
// Enforce withdrawal cooldown to prevent spam withdrawals
uint256 lastWithdrawalTime_ = lastWithdrawalTime[owner];
// Always allow first withdrawal and enforce cooldown for later withdrawals.
if (lastWithdrawalTime_ != 0 && lastWithdrawalTime_ + withdrawalCooldown > block.timestamp) {
revert WithdrawalCooldownActive();
}
// Without the revert, anyone can call withdraw
// with any `owner` and lock the cooldown for owner,
// making it possible that owner can not withdraw anymore.
if (shares == 0) {
revert ZeroShares();
}
// Update last withdrawal time
lastWithdrawalTime[owner] = block.timestamp;
// Execute common withdrawal logic without msg.value
_executeWithdrawal(caller, receiver, owner, assets, shares, 0, true);
}
/// @notice Withdraw assets with ETH for bridge fees, bypassing cooldown.
/// @param assets The amount of assets to withdraw
/// @param receiver The address to receive the assets on L2
/// @param owner The owner of the shares
/// @return shares The amount of shares burned
function withdrawWithPayable(uint256 assets, address receiver, address owner)
public
payable
virtual
whenNotPaused
nonReentrant
returns (uint256 shares)
{
// maxWithdraw already checks the state and reverts.
uint256 maxAssets = maxWithdraw(owner);
if (assets > maxAssets) {
revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
}
shares = previewWithdraw(assets);
_executeWithdrawal(_msgSender(), receiver, owner, assets, shares, msg.value, false);
}
/// @notice Internal function to execute withdrawal logic
/// @param caller The address calling the withdrawal
/// @param receiver The address to receive the assets
/// @param owner The owner of the shares
/// @param assets The amount of assets to withdraw
/// @param shares The amount of shares to burn
/// @param value The ETH value to forward to the bridge
/// @param sponsorFee Whether the protocol must sponsor the withdrawal for bridging.
function _executeWithdrawal(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares,
uint256 value,
bool sponsorFee
) internal virtual {
if (assets > l2PrincipalBalance) revert InvalidState();
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
_burn(owner, shares);
l2PrincipalBalance -= assets;
// Transfer assets to receiver through bridge
bytes32 bridgeRequestId =
bridge.claimAssetsOnL2{value: value}(asset(), assets, receiver, sponsorFee);
emit Withdraw(msg.sender, receiver, owner, assets, shares);
emit BridgeRequestCreated(bridgeRequestId, owner, assets);
}
/// @inheritdoc IPreDepositVault
function retryWithdrawal(bytes32 bridgeRequestId)
public
payable
virtual
whenNotPaused
nonReentrant
checkState(VaultState.WITHDRAWALS)
{
if (address(bridge) == address(0)) revert InvalidState();
bridge.retryClaimOnL2{value: msg.value}(bridgeRequestId);
}
// View functions
/// @notice Returns the total assets managed by the vault
/// @dev Includes available assets, strategy assets, and L2 principal balance
/// @return The total asset amount
function totalAssets() public view virtual override(ERC4626, IERC4626) returns (uint256) {
return availableAssets() + strategyAssets() + l2PrincipalBalance;
}
/// @inheritdoc IPreDepositVault
function availableAssets() public view virtual override returns (uint256) {
return IERC20(asset()).balanceOf(address(this));
}
/// @inheritdoc IPreDepositVault
function strategyAssets() public view virtual override returns (uint256) {
return address(STRATEGY) != address(0) ? STRATEGY.totalAssets() : 0;
}
/// @inheritdoc IPreDepositVault
function getDepositLimits() public view virtual returns (uint256, uint256, uint256) {
return
(depositLimits.minDepositAmount, depositLimits.maxDepositAmount, depositLimits.maxTotalAssets);
}
/// @inheritdoc IPreDepositVault
function getCurrentState() public view virtual returns (uint8) {
return uint8(currentState);
}
/// @notice Checks if the vault is in the expected state
/// @param expectedState The expected vault state
/// @return True if the current state matches the expected state
function isStateValid(VaultState expectedState) public view virtual returns (bool) {
return currentState == expectedState;
}
/**
* @dev Extends {IERC4626-maxDeposit} to handle the paused state
*/
function maxDeposit(address) public view virtual override(ERC4626, IERC4626) returns (uint256) {
if (!isStateValid(VaultState.DEPOSITS)) return 0;
return remainingCapacity();
}
/// @notice Returns the remaining deposit capacity of the vault
/// @return The remaining capacity (minimum of max deposit amount and remaining vault capacity)
function remainingCapacity() public view virtual returns (uint256) {
(, uint256 maxDepositAmount, uint256 maxTotalAssets) = getDepositLimits();
uint256 totalAssets_ = totalAssets();
// Calculate remaining capacity based on vault cap
uint256 vaultCapacity = maxTotalAssets > totalAssets_ ? maxTotalAssets - totalAssets_ : 0;
// Return the minimum of maxDepositAmount and remaining capacity
return Math.min(maxDepositAmount, vaultCapacity);
}
/**
* @dev Extends {IERC4626-maxMint} to handle the paused state
*/
function maxMint(address) public view virtual override(ERC4626, IERC4626) returns (uint256) {
if (!isStateValid(VaultState.DEPOSITS)) return 0;
return _convertToShares(remainingCapacity(), Math.Rounding.Floor);
}
/**
* @dev Extends {IERC4626-maxWithdraw} to handle the paused state
*/
function maxWithdraw(address owner)
public
view
virtual
override(ERC4626, IERC4626)
returns (uint256)
{
if (!isStateValid(VaultState.WITHDRAWALS)) return 0;
return super.maxWithdraw(owner);
}
/**
* @dev Extends {IERC4626-maxRedeem} to handle the paused state
*/
function maxRedeem(address owner)
public
view
virtual
override(ERC4626, IERC4626)
returns (uint256)
{
if (!isStateValid(VaultState.WITHDRAWALS)) return 0;
return super.maxRedeem(owner);
}
/// @notice Returns the strategy contract address
/// @return The strategy contract
function strategy() public view virtual returns (IStrategy) {
return STRATEGY;
}
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {BridgeRelayer} from "./BridgeRelayer.sol";
import {IBridgeRelayer} from "../interfaces/IBridgeRelayer.sol";
import {ILineaTokenBridge} from "../interfaces/linea/ILineaTokenBridge.sol";
import {ILineaMessageService} from "../interfaces/linea/ILineaMessageService.sol";
import {IL2ClaimVault} from "../interfaces/IL2ClaimVault.sol";
import {IWETH} from "../interfaces/IWETH.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
contract LineaBridgeRelayer is BridgeRelayer {
using SafeERC20 for IERC20;
ILineaTokenBridge public tokenBridge;
ILineaMessageService public messageService;
IL2ClaimVault public l2ClaimVault;
IWETH public immutable WETH;
error InvalidBridgeEndpoint();
error InvalidClaimVault();
error EthTransferFailed();
error InvalidWETHAddress();
/// @dev tokenBridge and messageService can be zero addresses
/// during construction, as they may not exist when the target
/// chain has not yet launched. Use updateLineaEndpoints() to
/// set them later with `updateLineaEndpoints`.
constructor(
address admin,
address tokenBridge_,
address messageService_,
address weth,
BridgeConfig memory config
) BridgeRelayer(admin, config) {
if (weth.code.length == 0) {
revert InvalidWETHAddress();
}
tokenBridge = ILineaTokenBridge(tokenBridge_);
messageService = ILineaMessageService(messageService_);
WETH = IWETH(weth);
}
/// @notice Updates the Linea bridge endpoints
/// @param tokenBridge_ The new token bridge address
/// @param messageService_ The new message service address
function updateLineaEndpoints(address tokenBridge_, address messageService_)
external
onlyRole(CONFIG_ROLE)
{
if (tokenBridge_ == address(0) || messageService_ == address(0)) revert InvalidBridgeEndpoint();
tokenBridge = ILineaTokenBridge(tokenBridge_);
messageService = ILineaMessageService(messageService_);
}
/// @notice Sets the L2 claim vault address
/// @param l2ClaimVault_ The L2 claim vault address
function setL2ClaimVault(address l2ClaimVault_) external onlyRole(CONFIG_ROLE) {
if (l2ClaimVault_ == address(0)) revert InvalidClaimVault();
l2ClaimVault = IL2ClaimVault(l2ClaimVault_);
}
/// @notice Updates the Linea bridge configuration
/// @param config The new bridge configuration
function setLineaConfig(BridgeConfig memory config) external onlyRole(CONFIG_ROLE) {
_config = config;
}
/// @notice Withdraws ETH from the contract
/// @param to The address to send ETH to
/// @param amount The amount of ETH to withdraw
function withdrawETH(address to, uint256 amount) external onlyRole(CONFIG_ROLE) {
if (to == address(0)) revert InvalidRecipient();
if (amount > address(this).balance) revert InvalidAmount();
(bool success,) = to.call{value: amount}("");
if (!success) revert EthTransferFailed();
}
/*///////////////////////////////////////////////////////////////
Claim Assets
//////////////////////////////////////////////////////////////*/
function _claimAssetsOnL2(address asset, uint256 amount, address recipient)
internal
override
returns (bytes32 bridgeRequestId)
{
bridgeRequestId = _nextBridgeRequestId(msg.sender, asset, amount, recipient);
_sendClaimMessage(bridgeRequestId, recipient, amount);
}
function _retryClaimAssetsOnL2(
bytes32 bridgeRequestId,
IBridgeRelayer.BridgeRequest memory request
) internal override {
_sendClaimMessage(bridgeRequestId, request.recipient, request.amount);
}
/// @notice Sends a claim message to L2 via Linea message service
/// @param bridgeRequestId The bridge request ID
/// @param recipient The L2 recipient address
/// @param amount The amount to record for claiming
function _sendClaimMessage(bytes32 bridgeRequestId, address recipient, uint256 amount) private {
if (address(l2ClaimVault) == address(0)) revert InvalidClaimVault();
uint256 fee = _config.maxFee;
bytes memory calldata_ =
abi.encodeCall(IL2ClaimVault.recordClaim, (bridgeRequestId, recipient, amount));
messageService.sendMessage{value: fee}(address(l2ClaimVault), fee, calldata_);
}
/*///////////////////////////////////////////////////////////////
Bridge Assets
//////////////////////////////////////////////////////////////*/
/// @notice Internal implementation of bridgeAssets for Linea
/// @param asset The asset to bridge
/// @param amount The amount to bridge
/// @param recipient The L2 recipient
/// @return The bridge request ID
function _bridgeAssets(address asset, uint256 amount, address recipient)
internal
override
returns (bytes32)
{
return _handleBridge(asset, amount, recipient);
}
/// @notice Routes bridge requests to native or ERC20 bridge
/// @param asset The asset to bridge
/// @param amount The amount to bridge
/// @param recipient The L2 recipient
/// @return The bridge request ID
function _handleBridge(address asset, uint256 amount, address recipient)
internal
returns (bytes32)
{
if (asset == address(WETH)) return _bridgeNative(amount, recipient);
return _bridgeErc20(asset, amount, recipient);
}
/// @notice Bridges ERC20 tokens to L2 via Linea token bridge
/// @param asset The ERC20 asset to bridge
/// @param amount The amount to bridge
/// @param recipient The L2 recipient
/// @return bridgeRequestId The bridge request ID
function _bridgeErc20(address asset, uint256 amount, address recipient)
internal
returns (bytes32 bridgeRequestId)
{
bridgeRequestId = _nextBridgeRequestId(msg.sender, asset, amount, recipient);
IERC20 token = IERC20(asset);
token.safeTransferFrom(msg.sender, address(this), amount);
token.approve(address(tokenBridge), amount);
tokenBridge.bridgeToken{value: _config.maxFee}(asset, amount, recipient);
}
/// @notice Bridges native ETH to L2 via Linea message service
/// @param amount The amount of WETH to unwrap and bridge
/// @param recipient The L2 recipient
/// @return bridgeRequestId The bridge request ID
function _bridgeNative(uint256 amount, address recipient)
internal
returns (bytes32 bridgeRequestId)
{
bridgeRequestId = _nextBridgeRequestId(msg.sender, address(WETH), amount, recipient);
IERC20(address(WETH)).safeTransferFrom(msg.sender, address(this), amount);
WETH.withdraw(amount);
uint256 fee = _config.maxFee;
messageService.sendMessage{value: amount + fee}(recipient, fee, "");
}
/// @notice Allows the contract to receive native ETH
receive() external payable {}
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
interface IPreDepositVault is IERC4626, IAccessControl {
// Custom Errors
error Disabled();
error InvalidAmount();
error InsufficientBalance();
error InvalidState();
error InvalidAddress();
error WithdrawalCooldownActive();
error ZeroShares();
// Events
/// @notice Emitted when the vault state is advanced
event StateAdvanced(uint8 newState);
/// @notice Emitted when the bridge relayer is updated
event BridgeUpdated(address indexed newBridge);
/// @notice Emitted when a withdrawal occurs
event Withdrawal(
address indexed sender,
address indexed owner,
uint256 assets,
uint256 shares,
address indexed receiver
);
/// @notice Emitted when assets are withdrawn through the bridge
event BridgeWithdrawal(address indexed receiver, uint256 assets, bytes bridgeData);
/// @notice Emitted when a bridge request is created
event BridgeRequestCreated(
bytes32 indexed bridgeRequestId, address indexed owner, uint256 assets
);
/// @notice Emitted when assets are allocated to a strategy
event StrategyAllocation(address indexed strategy, uint256 amount);
/// @notice Emitted when assets are deallocated from a strategy
event StrategyDeallocation(address indexed strategy, uint256 amount);
/// @notice Emitted when a strategy withdrawal is initiated
event StrategyWithdrawalInitiated(address indexed strategy, uint256 amount);
/// @notice Emitted when emergency pause is activated
event EmergencyPauseActivated(address indexed admin);
/// @notice Emitted when emergency pause is deactivated
event EmergencyPauseDeactivated(address indexed admin);
/// @notice Emitted when deposit limits are updated
event DepositLimitsUpdated(DepositLimits limits);
/// @notice Emitted when assets are bridged to L2
event AssetsBridgedToL2(
bytes32 indexed bridgeRequestId, uint256 totalAmount, address indexed l2Recipient
);
/// @notice Emitted when the principal receiver is updated
event PrincipalReceiverUpdated(address receiver);
/// @notice Emitted when the yield receiver is updated
event YieldReceiverUpdated(address receiver);
/// @notice Emitted when the withdrawal cooldown is updated
event WithdrawalCooldownUpdated(uint32 newCooldown);
struct DepositLimits {
uint256 minDepositAmount;
uint256 maxDepositAmount;
uint256 maxTotalAssets;
}
// State variables
/// @notice Returns the current vault state
/// @return The current state as a uint8
function getCurrentState() external view returns (uint8);
/// @notice Returns the deposit limits
/// @return minDepositAmount The minimum deposit amount
/// @return maxDepositAmount The maximum deposit amount per transaction
/// @return maxTotalAssets The maximum total assets the vault can hold
function getDepositLimits() external view returns (uint256, uint256, uint256);
// Admin functions
/// @notice Advances the vault to the next state
/// @param newState The new state to advance to (prevents skipping states)
function advanceState(uint8 newState) external;
/// @notice Sets the bridge relayer contract
/// @param newBridge The address of the new bridge relayer
function setBridge(address newBridge) external;
/// @notice Sets the deposit limits for the vault
/// @param limits The new deposit limits
function setDepositLimits(DepositLimits memory limits) external;
/// @notice Sets the withdrawal cooldown period
/// @param newCooldown The new cooldown period in seconds (max 5 days)
function setWithdrawalCooldown(uint32 newCooldown) external;
/// @notice Initiates withdrawal of all assets from the strategy
function initiateStrategyWithdrawal() external;
/// @notice Completes a pending withdrawal from the strategy
function completeStrategyWithdrawal() external;
/// @notice Bridges assets to L2, splitting between principal and yield
/// @param l2PrincipalReceiver The L2 address to receive principal assets
/// @param l2YieldReceiver The L2 address to receive yield assets
function bridgeAssetsToL2(address l2PrincipalReceiver, address l2YieldReceiver) external;
/// @notice Retries a failed withdrawal bridge request
/// @param bridgeRequestId The bridge request ID to retry
function retryWithdrawal(bytes32 bridgeRequestId) external payable;
// View functions
/// @notice Returns the amount of assets available in the vault (not in strategy)
/// @return The available asset amount
function availableAssets() external view returns (uint256);
/// @notice Returns the amount of assets currently in the strategy
/// @return The strategy asset amount
function strategyAssets() external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";
/**
* @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
* The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
* and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
* itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
* offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
* of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
* With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
* underlying math can be found xref:ROOT:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*/
abstract contract ERC4626 is ERC20, IERC4626 {
using Math for uint256;
IERC20 private immutable _asset;
uint8 private immutable _underlyingDecimals;
/**
* @dev Attempted to deposit more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);
/**
* @dev Attempted to mint more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);
/**
* @dev Attempted to withdraw more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
/**
* @dev Attempted to redeem more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
*/
constructor(IERC20 asset_) {
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
_underlyingDecimals = success ? assetDecimals : 18;
_asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
(bool success, bytes memory encodedDecimals) =
address(asset_).staticcall(abi.encodeCall(IERC20Metadata.decimals, ()));
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
return _underlyingDecimals + _decimalsOffset();
}
/// @inheritdoc IERC4626
function asset() public view virtual returns (address) {
return address(_asset);
}
/// @inheritdoc IERC4626
function totalAssets() public view virtual returns (uint256) {
return IERC20(asset()).balanceOf(address(this));
}
/// @inheritdoc IERC4626
function convertToShares(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/// @inheritdoc IERC4626
function convertToAssets(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/// @inheritdoc IERC4626
function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/// @inheritdoc IERC4626
function maxMint(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/// @inheritdoc IERC4626
function maxWithdraw(address owner) public view virtual returns (uint256) {
return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
}
/// @inheritdoc IERC4626
function maxRedeem(address owner) public view virtual returns (uint256) {
return balanceOf(owner);
}
/// @inheritdoc IERC4626
function previewDeposit(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/// @inheritdoc IERC4626
function previewMint(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Ceil);
}
/// @inheritdoc IERC4626
function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Ceil);
}
/// @inheritdoc IERC4626
function previewRedeem(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/// @inheritdoc IERC4626
function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
uint256 maxAssets = maxDeposit(receiver);
if (assets > maxAssets) {
revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
}
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/// @inheritdoc IERC4626
function mint(uint256 shares, address receiver) public virtual returns (uint256) {
uint256 maxShares = maxMint(receiver);
if (shares > maxShares) {
revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
}
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/// @inheritdoc IERC4626
function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
uint256 maxAssets = maxWithdraw(owner);
if (assets > maxAssets) {
revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
}
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/// @inheritdoc IERC4626
function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
uint256 maxShares = maxRedeem(owner);
if (shares > maxShares) {
revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
}
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
// If asset() is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20.safeTransferFrom(IERC20(asset()), caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
internal
virtual
{
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If asset() is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20.safeTransfer(IERC20(asset()), receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/// @inheritdoc IERC20
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC4626.sol)
pragma solidity >=0.6.2;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
interface IStrategy {
// Custom Errors
error Unauthorized();
error InvalidState();
error InsufficientBalance();
error InvalidAmount();
error InvalidAddress();
error OperationFailed();
// Events
/// @notice Emitted when assets are allocated to the strategy
event Allocated(uint256 amount);
/// @notice Emitted when assets are deallocated from the strategy
event Deallocated(uint256 amount);
/// @notice Emitted when rewards are harvested
event RewardsHarvested(uint256 amount);
/// @notice Emitted when an emergency withdrawal occurs
event EmergencyWithdrawal(uint256 amount);
// Core functions
/// @notice Allocates assets to the strategy
/// @param amount The amount of assets to allocate
/// @return The actual amount allocated
function allocate(uint256 amount) external returns (uint256);
/// @notice Deallocates assets from the strategy
/// @param amount The amount of assets to deallocate
/// @return The actual amount deallocated
function deallocate(uint256 amount) external returns (uint256);
/// @notice Initiates withdrawal of all assets from the strategy
/// @return The amount being withdrawn
function withdrawAll() external returns (uint256);
/// @notice Completes a pending withdrawal
/// @return The amount withdrawn
function completeWithdrawal() external returns (uint256);
// View functions
/// @notice Returns the total assets managed by the strategy
/// @return The total asset amount
function totalAssets() external view returns (uint256);
/// @notice Returns the vault address
/// @return The vault address
function vault() external view returns (address);
/// @notice Returns the asset address
/// @return The asset address
function asset() external view returns (address);
/// @notice Checks if there is a pending withdrawal
/// @return True if there is a pending withdrawal
function hasPendingWithdrawal() external view returns (bool);
/// @notice Returns the pending withdrawal amount
/// @return The pending withdrawal amount
function pendingWithdrawalAmount() external view returns (uint256);
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
interface IBridgeRelayer {
// Custom errors
error Unauthorized();
error InvalidAsset();
error InvalidAmount();
error InvalidRecipient();
error InvalidState();
error FeeInsufficient();
// Bridge status lifecycle
enum BridgeStatus {
Pending,
Completed,
Failed
}
struct BridgeConfig {
uint256 defaultGasLimit;
uint256 maxFee; // in wei, used when non-zero fees apply
}
struct BridgeRequest {
address vault;
address asset;
uint256 amount;
address recipient;
bool isClaim;
}
/// @notice Emitted when a bridge transfer is initiated
event BridgeInitiated(
bytes32 indexed bridgeRequestId,
address indexed asset,
uint256 amount,
address indexed caller,
address l2Recipient
);
/// @notice Emitted when a bridge request status is updated
event BridgeStatusUpdated(bytes32 indexed bridgeRequestId, BridgeStatus status, bytes32 auxData);
/// @notice Emitted when a vault's allowlist status is updated
event VaultAllowlistUpdated(address indexed vault, bool allowed);
/// @notice Emitted when a bridge request is retried
event BridgeRetried(
bytes32 indexed bridgeRequestId, address indexed vault, address indexed asset
);
/// @notice Sends a message to L2 to record a claim (without bridging assets)
/// @param asset The asset address to claim on L2
/// @param amount The amount to record for claiming
/// @param recipient The L2 address that can claim the assets
/// @param sponsorFee Whether to sponsor bridging fee or not by protocol.
/// @return bridgeRequestId The unique identifier for this bridge request
function claimAssetsOnL2(address asset, uint256 amount, address recipient, bool sponsorFee)
external
payable
returns (bytes32 bridgeRequestId);
/// @notice Retries a failed claim message to L2
/// @param bridgeRequestId The bridge request ID to retry
function retryClaimOnL2(bytes32 bridgeRequestId) external payable;
/// @notice Bridges assets to L2
/// @param asset The asset address to bridge
/// @param amount The amount to bridge
/// @param recipient The L2 recipient address
/// @return bridgeRequestId The unique identifier for this bridge request
function bridgeAssets(address asset, uint256 amount, address recipient)
external
returns (bytes32 bridgeRequestId);
/// @notice Returns the status of a bridge request
/// @param bridgeRequestId The bridge request ID
/// @return status The current status of the bridge request
function getBridgeStatus(bytes32 bridgeRequestId) external view returns (BridgeStatus status);
/// @notice Returns the details of a bridge request
/// @param bridgeRequestId The bridge request ID
/// @return request The bridge request details
function getBridgeRequest(bytes32 bridgeRequestId)
external
view
returns (BridgeRequest memory request);
/// @notice Estimates the fee required to bridge assets
/// @param asset The asset to bridge
/// @param amount The amount to bridge
/// @return fee The estimated fee in wei
function estimateBridgeFee(address asset, uint256 amount) external view returns (uint256 fee);
/// @notice Returns the bridge configuration
/// @return config The bridge configuration
function bridgeConfig() external view returns (BridgeConfig memory config);
/// @notice Checks if a vault is allowed to use the bridge
/// @param vault The vault address to check
/// @return allowed True if the vault is allowed
function isVaultAllowed(address vault) external view returns (bool allowed);
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {IBridgeRelayer} from "../interfaces/IBridgeRelayer.sol";
abstract contract BridgeRelayer is AccessControl, IBridgeRelayer {
bytes32 public constant CONFIG_ROLE = keccak256("CONFIG_ROLE");
mapping(address => bool) internal _vaultAllowlist;
mapping(bytes32 => BridgeStatus) internal _bridgeStatuses;
mapping(bytes32 => IBridgeRelayer.BridgeRequest) internal _bridgeRequests;
BridgeConfig internal _config;
uint256 internal _requestNonce;
error NotImplemented();
error MismatchedFeePassedValue(uint256 expected, uint256 actual);
constructor(address admin, BridgeConfig memory config) {
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(CONFIG_ROLE, admin);
_config = config;
}
/// @notice Sets whether a vault is allowed to use the bridge
/// @param vault The vault address to update allowlist status for
/// @param allowed True to allow, false to disallow
function setVaultAllowed(address vault, bool allowed) external onlyRole(CONFIG_ROLE) {
_vaultAllowlist[vault] = allowed;
emit VaultAllowlistUpdated(vault, allowed);
}
/// @inheritdoc IBridgeRelayer
function isVaultAllowed(address vault) public view override returns (bool allowed) {
return _vaultAllowlist[vault];
}
/// @inheritdoc IBridgeRelayer
function getBridgeStatus(bytes32 bridgeRequestId)
public
view
override
returns (BridgeStatus status)
{
return _bridgeStatuses[bridgeRequestId];
}
/// @inheritdoc IBridgeRelayer
function estimateBridgeFee(address, uint256) public view virtual override returns (uint256 fee) {
return 0;
}
/// @inheritdoc IBridgeRelayer
function bridgeConfig() public view override returns (BridgeConfig memory config) {
return _config;
}
/// @inheritdoc IBridgeRelayer
function claimAssetsOnL2(address asset, uint256 amount, address recipient, bool sponsorFee)
public
payable
virtual
override
returns (bytes32 bridgeRequestId)
{
_enforceAllowedCaller();
_validateBridgeInputs(asset, amount, recipient);
// Make sure that msg.value exactly matches the required fee for bridging.
uint256 requiredFee = sponsorFee ? 0 : _config.maxFee;
if (msg.value != requiredFee) {
revert MismatchedFeePassedValue(requiredFee, msg.value);
}
bridgeRequestId = _claimAssetsOnL2(asset, amount, recipient);
if (bridgeRequestId == bytes32(0)) {
revert InvalidState();
}
_recordPending(bridgeRequestId, asset, amount, recipient, true);
emit BridgeInitiated(bridgeRequestId, asset, amount, msg.sender, recipient);
}
/// @inheritdoc IBridgeRelayer
function retryClaimOnL2(bytes32 bridgeRequestId) public payable virtual override {
IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
if (request.vault == address(0)) revert InvalidState();
if (!request.isClaim) revert InvalidState();
if (request.vault != msg.sender) revert Unauthorized();
BridgeStatus status = _bridgeStatuses[bridgeRequestId];
if (status == BridgeStatus.Completed) revert InvalidState();
// For retry transactions, users are required to provide fee.
if (msg.value < _config.maxFee) {
revert MismatchedFeePassedValue(_config.maxFee, msg.value);
}
_retryClaimAssetsOnL2(bridgeRequestId, request);
emit BridgeRetried(bridgeRequestId, msg.sender, request.asset);
}
/// @inheritdoc IBridgeRelayer
function bridgeAssets(address asset, uint256 amount, address recipient)
public
virtual
override
returns (bytes32 bridgeRequestId)
{
_enforceAllowedCaller();
_validateBridgeInputs(asset, amount, recipient);
bridgeRequestId = _bridgeAssets(asset, amount, recipient);
if (bridgeRequestId == bytes32(0)) {
revert InvalidState();
}
_recordPending(bridgeRequestId, asset, amount, recipient, false);
emit BridgeInitiated(bridgeRequestId, asset, amount, msg.sender, recipient);
}
/// @notice Enforces that the caller is an allowed vault
function _enforceAllowedCaller() internal view {
if (!_vaultAllowlist[msg.sender]) revert Unauthorized();
}
/// @notice Validates bridge input parameters
/// @param asset The asset address to validate
/// @param amount The amount to validate
/// @param recipient The recipient address to validate
function _validateBridgeInputs(address asset, uint256 amount, address recipient) internal pure {
if (asset == address(0)) revert InvalidAsset();
if (amount == 0) revert InvalidAmount();
if (recipient == address(0)) revert InvalidRecipient();
}
/// @notice Records a pending bridge request
/// @param bridgeRequestId The unique bridge request identifier
/// @param asset The asset being bridged
/// @param amount The amount of assets to record
/// @param recipient The L2 recipient of the bridged assets
/// @param isClaim Whether this is a claim (true) or asset bridge (false)
function _recordPending(
bytes32 bridgeRequestId,
address asset,
uint256 amount,
address recipient,
bool isClaim
) internal {
_bridgeStatuses[bridgeRequestId] = BridgeStatus.Pending;
_bridgeRequests[bridgeRequestId] = IBridgeRelayer.BridgeRequest({
vault: msg.sender,
asset: asset,
amount: amount,
recipient: recipient,
isClaim: isClaim
});
}
/// @notice Updates the status of a bridge request
/// @param bridgeRequestId The bridge request ID
/// @param status The new status
/// @param auxData Additional data to emit with the status update
function _updateStatus(bytes32 bridgeRequestId, BridgeStatus status, bytes32 auxData) internal {
_bridgeStatuses[bridgeRequestId] = status;
emit BridgeStatusUpdated(bridgeRequestId, status, auxData);
}
/// @notice Generates the next unique bridge request ID
/// @param caller The address initiating the bridge request
/// @param asset The asset being bridged
/// @param amount The amount of assets being bridged
/// @param recipient The L2 recipient of the bridged assets
/// @return The unique bridge request ID
function _nextBridgeRequestId(address caller, address asset, uint256 amount, address recipient)
internal
returns (bytes32)
{
unchecked {
++_requestNonce;
}
return keccak256(
abi.encodePacked(address(this), caller, asset, amount, recipient, _requestNonce, block.number)
);
}
/// @notice Marks a bridge request as completed
/// @param bridgeRequestId The bridge request ID
/// @param auxData Additional data to store
function markBridgeCompleted(bytes32 bridgeRequestId, bytes32 auxData)
external
onlyRole(CONFIG_ROLE)
{
IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
if (request.vault == address(0)) {
revert InvalidState();
}
BridgeStatus current = _bridgeStatuses[bridgeRequestId];
if (current == BridgeStatus.Completed) {
revert InvalidState();
}
_updateStatus(bridgeRequestId, BridgeStatus.Completed, auxData);
}
/// @notice Marks a bridge request as failed
/// @param bridgeRequestId The bridge request ID
/// @param auxData Additional data to store
function markBridgeFailed(bytes32 bridgeRequestId, bytes32 auxData)
external
onlyRole(CONFIG_ROLE)
{
IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
if (request.vault == address(0)) {
revert InvalidState();
}
BridgeStatus current = _bridgeStatuses[bridgeRequestId];
if (current == BridgeStatus.Failed) {
revert InvalidState();
}
_updateStatus(bridgeRequestId, BridgeStatus.Failed, auxData);
}
/// @inheritdoc IBridgeRelayer
function getBridgeRequest(bytes32 bridgeRequestId)
public
view
override
returns (IBridgeRelayer.BridgeRequest memory request)
{
request = _bridgeRequests[bridgeRequestId];
}
/// @notice Internal function to send claim message to L2 (implemented by child contracts)
/// @param asset The asset to record for claiming
/// @param amount The amount of assets to record for claiming on L2
/// @param recipient The L2 address that can claim the assets
/// @return The bridge request ID
function _claimAssetsOnL2(address asset, uint256 amount, address recipient)
internal
virtual
returns (bytes32);
/// @notice Internal function to bridge assets to L2 (implemented by child contracts)
/// @param asset The asset to bridge
/// @param amount The amount of assets to bridge to L2
/// @param recipient The L2 recipient of the bridged assets
/// @return The bridge request ID
function _bridgeAssets(address asset, uint256 amount, address recipient)
internal
virtual
returns (bytes32);
/// @notice Internal function to retry claim on L2 (implemented by child contracts)
/// @param bridgeRequestId The bridge request ID
/// @param request The bridge request details
function _retryClaimAssetsOnL2(
bytes32 bridgeRequestId,
IBridgeRelayer.BridgeRequest memory request
) internal virtual;
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
interface ILineaTokenBridge {
function bridgeToken(address token, uint256 amount, address to) external payable;
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
interface ILineaMessageService {
function sendMessage(address to, uint256 fee, bytes calldata callData) external payable;
function claimMessage(
address from,
address to,
uint256 fee,
uint256 value,
address payable feeRecipient,
bytes calldata callData,
uint256 nonce
) external;
function sender() external view returns (address);
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ILineaMessageService} from "./linea/ILineaMessageService.sol";
import {Action} from "@aragon/osx-commons-contracts/src/executors/IExecutor.sol";
interface IL2ClaimVault is IAccessControl {
// ===== Errors =====
error UnauthorizedCaller();
error InvalidAmount();
error InvalidRecipient();
error AlreadyProcessed();
error InvalidDepositId();
error InsufficientLiquidity();
error EthTransferFailed();
error InvalidLengthMismatch();
error NotContract();
error TargetNotWhitelisted(address target);
error InvalidValue();
// ===== Events =====
/// @notice Emitted when a claim is recorded for a user
event ClaimRecorded(bytes32 indexed bridgeRequestId, address indexed recipient, uint256 amount);
/// @notice Emitted when a claim is fulfilled and withdrawn
event ClaimFulfilled(
address indexed recipient, uint256 amount, Action[] actions, bytes[] execResults
);
/// @notice Emitted when a target's whitelist status is updated
event WhitelistTargetSet(address indexed target, bool enabled);
// ===== Core Functions =====
/// @notice Records a claim for a recipient (called by the bridge)
/// @dev Only callable by the authorized bridge relayer via the message service
/// @param bridgeRequestId The unique identifier for the bridge request
/// @param recipient The address that will be able to claim the funds
/// @param amount The amount of assets to record for the claim
function recordClaim(bytes32 bridgeRequestId, address recipient, uint256 amount) external;
/// @notice Fulfills a claim by withdrawing recorded amounts with optional actions
/// @dev Withdraws the full pending amount for msg.sender
/// @param actions Optional array of actions to execute with the withdrawn funds
function fulfillClaim(Action[] calldata actions) external payable;
/// @notice Pauses the contract
function pause() external;
/// @notice Unpauses the contract
function unpause() external;
// ===== Views =====
/// @notice Returns the asset address (address(0) for native ETH)
/// @return The asset address
function asset() external view returns (address);
/// @notice Returns the Linea message service contract
/// @return The message service contract
function messageService() external view returns (ILineaMessageService);
/// @notice Returns the L1 relayer address authorized to send claims
/// @return The L1 relayer address
function l1Relayer() external view returns (address);
/// @notice Returns the total amount claimed by all users
/// @return The total claimed amount
function totalClaimed() external view returns (uint256);
/// @notice Returns the available liquidity in the vault
/// @return The available liquidity amount
function availableLiquidity() external view returns (uint256);
/// @notice Checks if a bridge request has been processed
/// @param bridgeRequestId The bridge request identifier to check
/// @return Whether the request has been processed
function isClaimProcessed(bytes32 bridgeRequestId) external view returns (bool);
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 amount) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)
pragma solidity >=0.8.4;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted to signal this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @notice The action struct to be consumed by the DAO's `execute` function resulting in an external call.
/// @param to The address to call.
/// @param value The native token value to be sent with the call.
/// @param data The bytes-encoded function selector and calldata for the call.
struct Action {
address to;
uint256 value;
bytes data;
}
/// @title IExecutor
/// @author Aragon X - 2024
/// @notice The interface required for Executors within the Aragon App DAO framework.
/// @custom:security-contact [email protected]
interface IExecutor {
/// @notice Emitted when a proposal is executed.
/// @dev The value of `callId` is defined by the component/contract calling the execute function.
/// A `Plugin` implementation can use it, for example, as a nonce.
/// @param actor The address of the caller.
/// @param callId The ID of the call.
/// @param actions The array of actions executed.
/// @param allowFailureMap The allow failure map encoding which actions are allowed to fail.
/// @param failureMap The failure map encoding which actions have failed.
/// @param execResults The array with the results of the executed actions.
event Executed(
address indexed actor,
bytes32 callId,
Action[] actions,
uint256 allowFailureMap,
uint256 failureMap,
bytes[] execResults
);
/// @notice Executes a list of actions. If a zero allow-failure map is provided, a failing action reverts the entire execution. If a non-zero allow-failure map is provided, allowed actions can fail without the entire call being reverted.
/// @param _callId The ID of the call. The definition of the value of `callId` is up to the calling contract and can be used, e.g., as a nonce.
/// @param _actions The array of actions.
/// @param _allowFailureMap A bitmap allowing execution to succeed, even if individual actions might revert. If the bit at index `i` is 1, the execution succeeds even if the `i`th action reverts. A failure map value of 0 requires every action to not revert.
/// @return The array of results obtained from the executed actions in `bytes`.
/// @return The resulting failure map containing the actions have actually failed.
function execute(
bytes32 _callId,
Action[] memory _actions,
uint256 _allowFailureMap
) external returns (bytes[] memory, uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)
pragma solidity >=0.4.16;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)
pragma solidity >=0.4.16;
import {IERC165} from "../utils/introspection/IERC165.sol";{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"src/=src/",
"test/=test/",
"@aragon/osx-commons-contracts/=lib/osx-commons/contracts/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"osx-commons/=lib/osx-commons/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadySetup","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"deployer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"bridge","type":"address"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"uint256","name":"minDeposit","type":"uint256"},{"internalType":"uint256","name":"maxDeposit","type":"uint256"},{"internalType":"uint256","name":"maxTotalAssets","type":"uint256"}],"name":"setupVault","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a0604052348015600e575f5ffd5b50336080526080516109376100305f395f818160520152609b01526109375ff3fe608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80639d2094c014610038578063d5f394881461004d575b5f5ffd5b61004b61004636600461088f565b610090565b005b6100747f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b03909116815260200160405180910390f35b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146100d8576040516282b42960e81b815260040160405180910390fd5b5f5460ff16156100fb57604051637735869160e01b815260040160405180910390fd5b5f805460ff1916600190811790915560405163ab05a1e360e01b81526001600160a01b0388811660048301526024820192909252879187919082169063ab05a1e3906044015f604051808303815f87803b158015610157575f5ffd5b505af1158015610169573d5f5f3e3d5ffd5b50506040516346e8a40160e11b81526001600160a01b038a8116600483015285169250638dd1480291506024015f604051808303815f87803b1580156101ad575f5ffd5b505af11580156101bf573d5f5f3e3d5ffd5b50506040805160608101825288815260208101888152818301888152925163bbc86c8360e01b815291516004830152516024820152905160448201526001600160a01b038516925063bbc86c8391506064015f604051808303815f87803b158015610228575f5ffd5b505af115801561023a573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610289573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ad91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156102f2575f5ffd5b505af1158015610304573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610353573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061037791906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156103bc575f5ffd5b505af11580156103ce573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561041d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061044191906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561047d575f5ffd5b505af115801561048f573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050291906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561053e575f5ffd5b505af1158015610550573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c391906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b158015610608575f5ffd5b505af115801561061a573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068d91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156106d2575f5ffd5b505af11580156106e4573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610733573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061075791906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610793575f5ffd5b505af11580156107a5573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f4573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061081891906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610854575f5ffd5b505af1158015610866573d5f5f3e3d5ffd5b505050505050505050505050565b80356001600160a01b038116811461088a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108a4575f5ffd5b6108ad87610874565b95506108bb60208801610874565b94506108c960408801610874565b959894975094956060810135955060808101359460a0909101359350915050565b5f602082840312156108fa575f5ffd5b505191905056fea26469706673582212202360c80ca9dc99bf3bd9662617b1bfa750fc2068f80e12e8106b447061a3e10264736f6c634300081c0033
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80639d2094c014610038578063d5f394881461004d575b5f5ffd5b61004b61004636600461088f565b610090565b005b6100747f000000000000000000000000579514d75023b09bf82022dbdfaf918c7de858da81565b6040516001600160a01b03909116815260200160405180910390f35b336001600160a01b037f000000000000000000000000579514d75023b09bf82022dbdfaf918c7de858da16146100d8576040516282b42960e81b815260040160405180910390fd5b5f5460ff16156100fb57604051637735869160e01b815260040160405180910390fd5b5f805460ff1916600190811790915560405163ab05a1e360e01b81526001600160a01b0388811660048301526024820192909252879187919082169063ab05a1e3906044015f604051808303815f87803b158015610157575f5ffd5b505af1158015610169573d5f5f3e3d5ffd5b50506040516346e8a40160e11b81526001600160a01b038a8116600483015285169250638dd1480291506024015f604051808303815f87803b1580156101ad575f5ffd5b505af11580156101bf573d5f5f3e3d5ffd5b50506040805160608101825288815260208101888152818301888152925163bbc86c8360e01b815291516004830152516024820152905160448201526001600160a01b038516925063bbc86c8391506064015f604051808303815f87803b158015610228575f5ffd5b505af115801561023a573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610289573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ad91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156102f2575f5ffd5b505af1158015610304573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610353573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061037791906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156103bc575f5ffd5b505af11580156103ce573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561041d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061044191906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561047d575f5ffd5b505af115801561048f573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050291906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561053e575f5ffd5b505af1158015610550573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c391906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b158015610608575f5ffd5b505af115801561061a573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068d91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156106d2575f5ffd5b505af11580156106e4573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610733573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061075791906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610793575f5ffd5b505af11580156107a5573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f4573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061081891906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610854575f5ffd5b505af1158015610866573d5f5f3e3d5ffd5b505050505050505050505050565b80356001600160a01b038116811461088a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108a4575f5ffd5b6108ad87610874565b95506108bb60208801610874565b94506108c960408801610874565b959894975094956060810135955060808101359460a0909101359350915050565b5f602082840312156108fa575f5ffd5b505191905056fea26469706673582212202360c80ca9dc99bf3bd9662617b1bfa750fc2068f80e12e8106b447061a3e10264736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.