ETH Price: $2,901.07 (-1.18%)

Contract

0xDA5Af0E0f408A0F9fD583f337827Fe570DFec3cB

Overview

ETH Balance

Linea Mainnet LogoLinea Mainnet LogoLinea Mainnet Logo0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Setup Vault261118202025-11-28 8:34:2858 days ago1764318868IN
0xDA5Af0E0...70DFec3cB
0 ETH0.000009690.03414411

Latest 19 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
261118202025-11-28 8:34:2858 days ago1764318868
0xDA5Af0E0...70DFec3cB
0 ETH
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
VaultSetup

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 32 : VaultSetup.sol
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {PreDepositVault} from "src/PreDepositVault.sol";
import {LineaBridgeRelayer} from "src/bridge/LineaBridgeRelayer.sol";
import {IPreDepositVault} from "src/interfaces/IPreDepositVault.sol";

/// @title VaultSetup
/// @notice Lightweight contract to batch all setup calls in a single transaction
/// @dev Deployments happen in script, this just wires everything together
contract VaultSetup {
  address public immutable deployer;
  bool private _setupComplete;

  error Unauthorized();
  error AlreadySetup();

  constructor() {
    deployer = msg.sender;
  }

  function setupVault(
    address vault,
    address bridge,
    address admin,
    uint256 minDeposit,
    uint256 maxDeposit,
    uint256 maxTotalAssets
  ) external {
    if (msg.sender != deployer) revert Unauthorized();
    if (_setupComplete) revert AlreadySetup();

    _setupComplete = true;

    PreDepositVault v = PreDepositVault(vault);
    LineaBridgeRelayer b = LineaBridgeRelayer(payable(bridge));

    // Wire contracts
    b.setVaultAllowed(vault, true);
    v.setBridge(bridge);
    v.setDepositLimits(IPreDepositVault.DepositLimits(minDeposit, maxDeposit, maxTotalAssets));

    // Transfer vault roles
    v.grantRole(v.DEFAULT_ADMIN_ROLE(), admin);
    v.grantRole(v.ADMIN_ROLE(), admin);
    v.renounceRole(v.DEFAULT_ADMIN_ROLE(), address(this));
    v.renounceRole(v.ADMIN_ROLE(), address(this));

    // Transfer bridge roles
    b.grantRole(b.DEFAULT_ADMIN_ROLE(), admin);
    b.grantRole(b.CONFIG_ROLE(), admin);
    b.renounceRole(b.DEFAULT_ADMIN_ROLE(), address(this));
    b.renounceRole(b.CONFIG_ROLE(), address(this));
  }
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";

import {IPreDepositVault} from "./interfaces/IPreDepositVault.sol";
import {IStrategy} from "./interfaces/IStrategy.sol";
import {IBridgeRelayer} from "./interfaces/IBridgeRelayer.sol";

/// @notice This is a pre-deposit vault that accumulates users' deposits into strategy,
///         then later on, withdraws from strategy, bridges them to L2 and allows users
///         to withdraw funds on L2.
/// The flow:
/// 1. Contract is deployed with `depositsEnabled: false, withdrawalsEnabled: false`.
/// 2. Admin turns on deposits.
/// 3. Users deposit assets.
/// 4. Admin turns off deposits.
/// 5. Admin initiates and completes withdrawal from strategy.
/// 6. Admin bridges assets to L2.
/// 7. Admin turns on withdrawals.
/// 8. Users withdraw.
contract PreDepositVault is ERC4626, AccessControl, Pausable, ReentrancyGuard, IPreDepositVault {
  using SafeERC20 for IERC20;
  using Math for uint256;

  // Role constants
  bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");

  // Max withdrawal cooldown period admin can set.
  uint32 public constant MAX_WITHDRAWAL_COOLDOWN = 5 days;

  // Vault state enum
  enum VaultState {
    INITIAL, // 0: Initial state, no operations allowed
    DEPOSITS, // 1: Only deposits allowed
    STRATEGY_WITHDRAWAL, // 2: Withdrawal from strategy
    BRIDGING, // 3: Bridging assets to L2
    WITHDRAWALS // 4: Only withdrawals(claims) allowed on L2

  }

  // State variables
  VaultState private currentState;
  uint32 public withdrawalCooldown;

  IStrategy public immutable STRATEGY;
  IBridgeRelayer public bridge;

  uint256 public l2PrincipalBalance;
  uint256 public receivedFromStrategy;
  uint256 public sentToStrategy;

  DepositLimits private depositLimits;

  mapping(address => uint256) public lastWithdrawalTime;

  constructor(
    IERC20 _asset,
    string memory _name,
    string memory _symbol,
    address _admin,
    IStrategy _strategy,
    uint32 _withdrawalCooldown
  ) ERC4626(_asset) ERC20(_name, _symbol) {
    _grantRole(DEFAULT_ADMIN_ROLE, _admin);
    _grantRole(ADMIN_ROLE, _admin);

    STRATEGY = _strategy;
    _setWithdrawalCooldown(_withdrawalCooldown);
  }

  modifier checkState(VaultState expectedState) virtual {
    if (!isStateValid(expectedState)) {
      revert InvalidState();
    }

    _;
  }

  // Admin functions

  /// @inheritdoc IPreDepositVault
  function advanceState(uint8 newState) public virtual onlyRole(ADMIN_ROLE) {
    if (currentState == type(VaultState).max) revert InvalidState();
    currentState = VaultState(uint8(currentState) + 1);
    if (newState != uint8(currentState)) revert InvalidState();
    emit StateAdvanced(uint8(currentState));
  }

  /// @notice Sets the vault state in emergency situations (only when paused)
  /// @param newState The new state to set the vault to
  function emergencySetState(uint8 newState) public virtual whenPaused onlyRole(ADMIN_ROLE) {
    currentState = VaultState(newState);
    emit StateAdvanced(uint8(currentState));
  }

  /// @inheritdoc IPreDepositVault
  function setBridge(address newBridge) public virtual override onlyRole(ADMIN_ROLE) {
    bridge = IBridgeRelayer(newBridge);
    emit BridgeUpdated(newBridge);
  }

  /// @inheritdoc IPreDepositVault
  function setDepositLimits(DepositLimits calldata _limits)
    public
    virtual
    override
    onlyRole(ADMIN_ROLE)
  {
    // state must be either initial or deposits.
    if (!isStateValid(VaultState.DEPOSITS) && !isStateValid(VaultState.INITIAL)) {
      revert InvalidState();
    }

    if (_limits.minDepositAmount > _limits.maxDepositAmount) revert InvalidAmount();
    if (_limits.maxTotalAssets < _limits.maxDepositAmount) revert InvalidAmount();

    depositLimits = _limits;

    emit DepositLimitsUpdated(_limits);
  }

  /// @notice Pauses the vault
  function pause() public onlyRole(ADMIN_ROLE) {
    _pause();
  }

  /// @notice Unpauses the vault
  function unpause() public onlyRole(ADMIN_ROLE) {
    _unpause();
  }

  /// @inheritdoc IPreDepositVault
  function setWithdrawalCooldown(uint32 newCooldown) public virtual override onlyRole(ADMIN_ROLE) {
    _setWithdrawalCooldown(newCooldown);
  }

  /// @notice Internal function to set the withdrawal cooldown
  /// @param newCooldown The new cooldown period in seconds
  function _setWithdrawalCooldown(uint32 newCooldown) internal {
    if (newCooldown > MAX_WITHDRAWAL_COOLDOWN) revert InvalidAmount();
    withdrawalCooldown = newCooldown;
    emit WithdrawalCooldownUpdated(newCooldown);
  }

  /// @inheritdoc IPreDepositVault
  function initiateStrategyWithdrawal()
    external
    override
    whenNotPaused
    onlyRole(ADMIN_ROLE)
    nonReentrant
    checkState(VaultState.STRATEGY_WITHDRAWAL)
  {
    if (address(STRATEGY) == address(0)) revert InvalidState();

    // Strategy holds no assets, nothing to withdraw from it.
    if (STRATEGY.totalAssets() == 0) revert InvalidState();

    if (STRATEGY.hasPendingWithdrawal()) revert InvalidState();

    uint256 balanceBefore = IERC20(asset()).balanceOf(address(this));
    STRATEGY.withdrawAll();
    uint256 balanceAfter = IERC20(asset()).balanceOf(address(this));

    uint256 netReceived = balanceAfter - balanceBefore;

    // If no deposits occur after a strategy withdrawal but the strategy
    // still gains tokens outside the vault, another withdrawal initiation
    // should be permitted. Hence, we use +=. This value resets to 0
    // once bridging occurs.
    receivedFromStrategy += netReceived;

    if (STRATEGY.hasPendingWithdrawal()) {
      emit StrategyWithdrawalInitiated(address(STRATEGY), netReceived);
    }
  }

  /// @inheritdoc IPreDepositVault
  function completeStrategyWithdrawal()
    external
    override
    whenNotPaused
    onlyRole(ADMIN_ROLE)
    nonReentrant
    checkState(VaultState.STRATEGY_WITHDRAWAL)
  {
    if (address(STRATEGY) == address(0)) revert InvalidState();

    if (!STRATEGY.hasPendingWithdrawal()) return;

    uint256 balanceBefore = IERC20(asset()).balanceOf(address(this));
    STRATEGY.completeWithdrawal();
    uint256 balanceAfter = IERC20(asset()).balanceOf(address(this));

    uint256 netReceived = balanceAfter - balanceBefore;

    // If no deposits occur after a strategy withdrawal but the strategy
    // still gains tokens outside the vault, another withdrawal initiation
    // should be permitted. Hence, we use +=. This value resets to 0
    // once bridging occurs.
    receivedFromStrategy += netReceived;

    emit StrategyDeallocation(address(STRATEGY), netReceived);
  }

  /// @inheritdoc IPreDepositVault
  function bridgeAssetsToL2(address l2PrincipalReceiver, address l2YieldReceiver)
    external
    override
    whenNotPaused
    onlyRole(ADMIN_ROLE)
    nonReentrant
    checkState(VaultState.BRIDGING)
  {
    // Verify we're in bridging state
    if (address(STRATEGY) != address(0) && STRATEGY.hasPendingWithdrawal()) revert InvalidState();

    uint256 vaultBalance = availableAssets();
    uint256 totalPrincipalToBridge;

    if (address(STRATEGY) != address(0)) {
      totalPrincipalToBridge = Math.min(sentToStrategy, receivedFromStrategy);
    } else {
      totalPrincipalToBridge = vaultBalance;
    }

    if (totalPrincipalToBridge > 0) {
      _bridge(l2PrincipalReceiver, totalPrincipalToBridge);

      l2PrincipalBalance += totalPrincipalToBridge;
    }

    // If there's any left, bridge to yield.
    uint256 remainingBalance = availableAssets();
    if (remainingBalance > 0) {
      // If both addresses are same, that means yield also
      // goes to the same L2 address, hence increase l2PrincipalBalance
      // so users can withdraw gains as well. see `_withdraw`.
      if (l2PrincipalReceiver == l2YieldReceiver) {
        l2PrincipalBalance += remainingBalance;
      }

      _bridge(l2YieldReceiver, remainingBalance);
    }

    // The entire amount received from the strategy is bridged;
    // reset the value to 0 after the bridging process completes.
    receivedFromStrategy = 0;
    sentToStrategy = 0;
  }

  /// @notice Internal helper function that bridges assets
  /// @param receiver The address on target chain that will be able to claim the assets
  /// @param amountToBridge The amount to bridge
  function _bridge(address receiver, uint256 amountToBridge) internal virtual {
    if (receiver == address(0)) revert InvalidAddress();

    IERC20(asset()).approve(address(bridge), amountToBridge);

    bytes32 bridgeRequestId = bridge.bridgeAssets(asset(), amountToBridge, receiver);

    emit AssetsBridgedToL2(bridgeRequestId, amountToBridge, receiver);
  }

  /*//////////////////////////////////////////////////////////////
                        ERC4626 OVERRIDDEN LOGIC
  //////////////////////////////////////////////////////////////*/

  /// @inheritdoc ERC4626
  /// @dev If deposits are disabled, `mint/deposit` will fail with max exceed errors. See
  ///     `ERC4626` and overriden implementation of `maxMint/maxDeposit` in this contract.
  function _deposit(address caller, address receiver, uint256 assets, uint256 shares)
    internal
    virtual
    override
  {
    _requireNotPaused();

    (uint256 minDepositAmount, uint256 maxDepositAmount, uint256 maxTotalAssets) =
      getDepositLimits();

    if (assets == 0 || assets < minDepositAmount || assets > maxDepositAmount) {
      revert InvalidAmount();
    }

    if (totalAssets() + assets > maxTotalAssets) revert InsufficientBalance();

    super._deposit(caller, receiver, assets, shares);

    // Call the strategy to process the deposit
    if (address(STRATEGY) != address(0)) {
      uint256 available = availableAssets();
      if (available > 0) {
        // Some tokens (e.g., USDT) revert on approve() if allowance != 0.
        // Strategy may not consume full allowance, so use forceApprove to reset before approving.
        IERC20(asset()).forceApprove(address(STRATEGY), available);

        uint256 allocated = STRATEGY.allocate(available);
        sentToStrategy += allocated;

        emit StrategyAllocation(address(STRATEGY), allocated);
      }
    }
  }

  /// @inheritdoc ERC4626
  /// @dev If withdrawals are disabled, `withdraw/redeem` will fail with
  ///      max exceed errors. For more, See `ERC4626` and overriden
  ///      implementation of `maxRedeem/maxWithdraw` in this contract.
  ///      This is a ERC4626 overriden function that can not be payable
  ///      which is needed in case bridge fees required > 0. To avoid
  ///      users spamming withdrawal with small amounts, causing protocol
  ///      funds to drain from relayer, it implements cooldown mechanism
  ///      per owner. If `owner` approves multiple users, one user
  ///      can block other users from withdrawing if using ERC4626 `withdraw`.
  ///      If that's the case, refer to `withdrawWithPayable`.
  function _withdraw(
    address caller,
    address receiver,
    address owner,
    uint256 assets,
    uint256 shares
  ) internal virtual override {
    _requireNotPaused();

    // Enforce withdrawal cooldown to prevent spam withdrawals
    uint256 lastWithdrawalTime_ = lastWithdrawalTime[owner];
    // Always allow first withdrawal and enforce cooldown for later withdrawals.
    if (lastWithdrawalTime_ != 0 && lastWithdrawalTime_ + withdrawalCooldown > block.timestamp) {
      revert WithdrawalCooldownActive();
    }

    // Without the revert, anyone can call withdraw
    // with any `owner` and lock the cooldown for owner,
    // making it possible that owner can not withdraw anymore.
    if (shares == 0) {
      revert ZeroShares();
    }

    // Update last withdrawal time
    lastWithdrawalTime[owner] = block.timestamp;

    // Execute common withdrawal logic without msg.value
    _executeWithdrawal(caller, receiver, owner, assets, shares, 0, true);
  }

  /// @notice Withdraw assets with ETH for bridge fees, bypassing cooldown.
  /// @param assets The amount of assets to withdraw
  /// @param receiver The address to receive the assets on L2
  /// @param owner The owner of the shares
  /// @return shares The amount of shares burned
  function withdrawWithPayable(uint256 assets, address receiver, address owner)
    public
    payable
    virtual
    whenNotPaused
    nonReentrant
    returns (uint256 shares)
  {
    // maxWithdraw already checks the state and reverts.
    uint256 maxAssets = maxWithdraw(owner);

    if (assets > maxAssets) {
      revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
    }

    shares = previewWithdraw(assets);
    _executeWithdrawal(_msgSender(), receiver, owner, assets, shares, msg.value, false);
  }

  /// @notice Internal function to execute withdrawal logic
  /// @param caller The address calling the withdrawal
  /// @param receiver The address to receive the assets
  /// @param owner The owner of the shares
  /// @param assets The amount of assets to withdraw
  /// @param shares The amount of shares to burn
  /// @param value The ETH value to forward to the bridge
  /// @param sponsorFee Whether the protocol must sponsor the withdrawal for bridging.
  function _executeWithdrawal(
    address caller,
    address receiver,
    address owner,
    uint256 assets,
    uint256 shares,
    uint256 value,
    bool sponsorFee
  ) internal virtual {
    if (assets > l2PrincipalBalance) revert InvalidState();

    if (caller != owner) {
      _spendAllowance(owner, caller, shares);
    }

    _burn(owner, shares);

    l2PrincipalBalance -= assets;

    // Transfer assets to receiver through bridge
    bytes32 bridgeRequestId =
      bridge.claimAssetsOnL2{value: value}(asset(), assets, receiver, sponsorFee);

    emit Withdraw(msg.sender, receiver, owner, assets, shares);
    emit BridgeRequestCreated(bridgeRequestId, owner, assets);
  }

  /// @inheritdoc IPreDepositVault
  function retryWithdrawal(bytes32 bridgeRequestId)
    public
    payable
    virtual
    whenNotPaused
    nonReentrant
    checkState(VaultState.WITHDRAWALS)
  {
    if (address(bridge) == address(0)) revert InvalidState();
    bridge.retryClaimOnL2{value: msg.value}(bridgeRequestId);
  }

  // View functions
  /// @notice Returns the total assets managed by the vault
  /// @dev Includes available assets, strategy assets, and L2 principal balance
  /// @return The total asset amount
  function totalAssets() public view virtual override(ERC4626, IERC4626) returns (uint256) {
    return availableAssets() + strategyAssets() + l2PrincipalBalance;
  }

  /// @inheritdoc IPreDepositVault
  function availableAssets() public view virtual override returns (uint256) {
    return IERC20(asset()).balanceOf(address(this));
  }

  /// @inheritdoc IPreDepositVault
  function strategyAssets() public view virtual override returns (uint256) {
    return address(STRATEGY) != address(0) ? STRATEGY.totalAssets() : 0;
  }

  /// @inheritdoc IPreDepositVault
  function getDepositLimits() public view virtual returns (uint256, uint256, uint256) {
    return
      (depositLimits.minDepositAmount, depositLimits.maxDepositAmount, depositLimits.maxTotalAssets);
  }

  /// @inheritdoc IPreDepositVault
  function getCurrentState() public view virtual returns (uint8) {
    return uint8(currentState);
  }

  /// @notice Checks if the vault is in the expected state
  /// @param expectedState The expected vault state
  /// @return True if the current state matches the expected state
  function isStateValid(VaultState expectedState) public view virtual returns (bool) {
    return currentState == expectedState;
  }

  /**
   * @dev Extends {IERC4626-maxDeposit} to handle the paused state
   */
  function maxDeposit(address) public view virtual override(ERC4626, IERC4626) returns (uint256) {
    if (!isStateValid(VaultState.DEPOSITS)) return 0;
    return remainingCapacity();
  }

  /// @notice Returns the remaining deposit capacity of the vault
  /// @return The remaining capacity (minimum of max deposit amount and remaining vault capacity)
  function remainingCapacity() public view virtual returns (uint256) {
    (, uint256 maxDepositAmount, uint256 maxTotalAssets) = getDepositLimits();
    uint256 totalAssets_ = totalAssets();

    // Calculate remaining capacity based on vault cap
    uint256 vaultCapacity = maxTotalAssets > totalAssets_ ? maxTotalAssets - totalAssets_ : 0;

    // Return the minimum of maxDepositAmount and remaining capacity
    return Math.min(maxDepositAmount, vaultCapacity);
  }

  /**
   * @dev Extends {IERC4626-maxMint} to handle the paused state
   */
  function maxMint(address) public view virtual override(ERC4626, IERC4626) returns (uint256) {
    if (!isStateValid(VaultState.DEPOSITS)) return 0;
    return _convertToShares(remainingCapacity(), Math.Rounding.Floor);
  }

  /**
   * @dev Extends {IERC4626-maxWithdraw} to handle the paused state
   */
  function maxWithdraw(address owner)
    public
    view
    virtual
    override(ERC4626, IERC4626)
    returns (uint256)
  {
    if (!isStateValid(VaultState.WITHDRAWALS)) return 0;
    return super.maxWithdraw(owner);
  }

  /**
   * @dev Extends {IERC4626-maxRedeem} to handle the paused state
   */
  function maxRedeem(address owner)
    public
    view
    virtual
    override(ERC4626, IERC4626)
    returns (uint256)
  {
    if (!isStateValid(VaultState.WITHDRAWALS)) return 0;
    return super.maxRedeem(owner);
  }

  /// @notice Returns the strategy contract address
  /// @return The strategy contract
  function strategy() public view virtual returns (IStrategy) {
    return STRATEGY;
  }
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {BridgeRelayer} from "./BridgeRelayer.sol";
import {IBridgeRelayer} from "../interfaces/IBridgeRelayer.sol";
import {ILineaTokenBridge} from "../interfaces/linea/ILineaTokenBridge.sol";
import {ILineaMessageService} from "../interfaces/linea/ILineaMessageService.sol";
import {IL2ClaimVault} from "../interfaces/IL2ClaimVault.sol";
import {IWETH} from "../interfaces/IWETH.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract LineaBridgeRelayer is BridgeRelayer {
  using SafeERC20 for IERC20;

  ILineaTokenBridge public tokenBridge;
  ILineaMessageService public messageService;
  IL2ClaimVault public l2ClaimVault;
  IWETH public immutable WETH;

  error InvalidBridgeEndpoint();
  error InvalidClaimVault();
  error EthTransferFailed();
  error InvalidWETHAddress();

  /// @dev tokenBridge and messageService can be zero addresses
  /// during construction, as they may not exist when the target
  /// chain has not yet launched. Use updateLineaEndpoints() to
  /// set them later with `updateLineaEndpoints`.
  constructor(
    address admin,
    address tokenBridge_,
    address messageService_,
    address weth,
    BridgeConfig memory config
  ) BridgeRelayer(admin, config) {
    if (weth.code.length == 0) {
      revert InvalidWETHAddress();
    }

    tokenBridge = ILineaTokenBridge(tokenBridge_);
    messageService = ILineaMessageService(messageService_);
    WETH = IWETH(weth);
  }

  /// @notice Updates the Linea bridge endpoints
  /// @param tokenBridge_ The new token bridge address
  /// @param messageService_ The new message service address
  function updateLineaEndpoints(address tokenBridge_, address messageService_)
    external
    onlyRole(CONFIG_ROLE)
  {
    if (tokenBridge_ == address(0) || messageService_ == address(0)) revert InvalidBridgeEndpoint();
    tokenBridge = ILineaTokenBridge(tokenBridge_);
    messageService = ILineaMessageService(messageService_);
  }

  /// @notice Sets the L2 claim vault address
  /// @param l2ClaimVault_ The L2 claim vault address
  function setL2ClaimVault(address l2ClaimVault_) external onlyRole(CONFIG_ROLE) {
    if (l2ClaimVault_ == address(0)) revert InvalidClaimVault();
    l2ClaimVault = IL2ClaimVault(l2ClaimVault_);
  }

  /// @notice Updates the Linea bridge configuration
  /// @param config The new bridge configuration
  function setLineaConfig(BridgeConfig memory config) external onlyRole(CONFIG_ROLE) {
    _config = config;
  }

  /// @notice Withdraws ETH from the contract
  /// @param to The address to send ETH to
  /// @param amount The amount of ETH to withdraw
  function withdrawETH(address to, uint256 amount) external onlyRole(CONFIG_ROLE) {
    if (to == address(0)) revert InvalidRecipient();
    if (amount > address(this).balance) revert InvalidAmount();

    (bool success,) = to.call{value: amount}("");
    if (!success) revert EthTransferFailed();
  }

  /*///////////////////////////////////////////////////////////////
                           Claim Assets
  //////////////////////////////////////////////////////////////*/

  function _claimAssetsOnL2(address asset, uint256 amount, address recipient)
    internal
    override
    returns (bytes32 bridgeRequestId)
  {
    bridgeRequestId = _nextBridgeRequestId(msg.sender, asset, amount, recipient);
    _sendClaimMessage(bridgeRequestId, recipient, amount);
  }

  function _retryClaimAssetsOnL2(
    bytes32 bridgeRequestId,
    IBridgeRelayer.BridgeRequest memory request
  ) internal override {
    _sendClaimMessage(bridgeRequestId, request.recipient, request.amount);
  }

  /// @notice Sends a claim message to L2 via Linea message service
  /// @param bridgeRequestId The bridge request ID
  /// @param recipient The L2 recipient address
  /// @param amount The amount to record for claiming
  function _sendClaimMessage(bytes32 bridgeRequestId, address recipient, uint256 amount) private {
    if (address(l2ClaimVault) == address(0)) revert InvalidClaimVault();

    uint256 fee = _config.maxFee;
    bytes memory calldata_ =
      abi.encodeCall(IL2ClaimVault.recordClaim, (bridgeRequestId, recipient, amount));

    messageService.sendMessage{value: fee}(address(l2ClaimVault), fee, calldata_);
  }

  /*///////////////////////////////////////////////////////////////
                           Bridge Assets
  //////////////////////////////////////////////////////////////*/

  /// @notice Internal implementation of bridgeAssets for Linea
  /// @param asset The asset to bridge
  /// @param amount The amount to bridge
  /// @param recipient The L2 recipient
  /// @return The bridge request ID
  function _bridgeAssets(address asset, uint256 amount, address recipient)
    internal
    override
    returns (bytes32)
  {
    return _handleBridge(asset, amount, recipient);
  }

  /// @notice Routes bridge requests to native or ERC20 bridge
  /// @param asset The asset to bridge
  /// @param amount The amount to bridge
  /// @param recipient The L2 recipient
  /// @return The bridge request ID
  function _handleBridge(address asset, uint256 amount, address recipient)
    internal
    returns (bytes32)
  {
    if (asset == address(WETH)) return _bridgeNative(amount, recipient);

    return _bridgeErc20(asset, amount, recipient);
  }

  /// @notice Bridges ERC20 tokens to L2 via Linea token bridge
  /// @param asset The ERC20 asset to bridge
  /// @param amount The amount to bridge
  /// @param recipient The L2 recipient
  /// @return bridgeRequestId The bridge request ID
  function _bridgeErc20(address asset, uint256 amount, address recipient)
    internal
    returns (bytes32 bridgeRequestId)
  {
    bridgeRequestId = _nextBridgeRequestId(msg.sender, asset, amount, recipient);

    IERC20 token = IERC20(asset);
    token.safeTransferFrom(msg.sender, address(this), amount);

    token.approve(address(tokenBridge), amount);
    tokenBridge.bridgeToken{value: _config.maxFee}(asset, amount, recipient);
  }

  /// @notice Bridges native ETH to L2 via Linea message service
  /// @param amount The amount of WETH to unwrap and bridge
  /// @param recipient The L2 recipient
  /// @return bridgeRequestId The bridge request ID
  function _bridgeNative(uint256 amount, address recipient)
    internal
    returns (bytes32 bridgeRequestId)
  {
    bridgeRequestId = _nextBridgeRequestId(msg.sender, address(WETH), amount, recipient);

    IERC20(address(WETH)).safeTransferFrom(msg.sender, address(this), amount);
    WETH.withdraw(amount);

    uint256 fee = _config.maxFee;
    messageService.sendMessage{value: amount + fee}(recipient, fee, "");
  }

  /// @notice Allows the contract to receive native ETH
  receive() external payable {}
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";

interface IPreDepositVault is IERC4626, IAccessControl {
  // Custom Errors
  error Disabled();
  error InvalidAmount();
  error InsufficientBalance();
  error InvalidState();
  error InvalidAddress();
  error WithdrawalCooldownActive();
  error ZeroShares();

  // Events
  /// @notice Emitted when the vault state is advanced
  event StateAdvanced(uint8 newState);
  /// @notice Emitted when the bridge relayer is updated
  event BridgeUpdated(address indexed newBridge);
  /// @notice Emitted when a withdrawal occurs
  event Withdrawal(
    address indexed sender,
    address indexed owner,
    uint256 assets,
    uint256 shares,
    address indexed receiver
  );
  /// @notice Emitted when assets are withdrawn through the bridge
  event BridgeWithdrawal(address indexed receiver, uint256 assets, bytes bridgeData);
  /// @notice Emitted when a bridge request is created
  event BridgeRequestCreated(
    bytes32 indexed bridgeRequestId, address indexed owner, uint256 assets
  );
  /// @notice Emitted when assets are allocated to a strategy
  event StrategyAllocation(address indexed strategy, uint256 amount);
  /// @notice Emitted when assets are deallocated from a strategy
  event StrategyDeallocation(address indexed strategy, uint256 amount);
  /// @notice Emitted when a strategy withdrawal is initiated
  event StrategyWithdrawalInitiated(address indexed strategy, uint256 amount);
  /// @notice Emitted when emergency pause is activated
  event EmergencyPauseActivated(address indexed admin);
  /// @notice Emitted when emergency pause is deactivated
  event EmergencyPauseDeactivated(address indexed admin);
  /// @notice Emitted when deposit limits are updated
  event DepositLimitsUpdated(DepositLimits limits);
  /// @notice Emitted when assets are bridged to L2
  event AssetsBridgedToL2(
    bytes32 indexed bridgeRequestId, uint256 totalAmount, address indexed l2Recipient
  );

  /// @notice Emitted when the principal receiver is updated
  event PrincipalReceiverUpdated(address receiver);
  /// @notice Emitted when the yield receiver is updated
  event YieldReceiverUpdated(address receiver);
  /// @notice Emitted when the withdrawal cooldown is updated
  event WithdrawalCooldownUpdated(uint32 newCooldown);

  struct DepositLimits {
    uint256 minDepositAmount;
    uint256 maxDepositAmount;
    uint256 maxTotalAssets;
  }

  // State variables
  /// @notice Returns the current vault state
  /// @return The current state as a uint8
  function getCurrentState() external view returns (uint8);

  /// @notice Returns the deposit limits
  /// @return minDepositAmount The minimum deposit amount
  /// @return maxDepositAmount The maximum deposit amount per transaction
  /// @return maxTotalAssets The maximum total assets the vault can hold
  function getDepositLimits() external view returns (uint256, uint256, uint256);

  // Admin functions
  /// @notice Advances the vault to the next state
  /// @param newState The new state to advance to (prevents skipping states)
  function advanceState(uint8 newState) external;

  /// @notice Sets the bridge relayer contract
  /// @param newBridge The address of the new bridge relayer
  function setBridge(address newBridge) external;

  /// @notice Sets the deposit limits for the vault
  /// @param limits The new deposit limits
  function setDepositLimits(DepositLimits memory limits) external;

  /// @notice Sets the withdrawal cooldown period
  /// @param newCooldown The new cooldown period in seconds (max 5 days)
  function setWithdrawalCooldown(uint32 newCooldown) external;

  /// @notice Initiates withdrawal of all assets from the strategy
  function initiateStrategyWithdrawal() external;

  /// @notice Completes a pending withdrawal from the strategy
  function completeStrategyWithdrawal() external;

  /// @notice Bridges assets to L2, splitting between principal and yield
  /// @param l2PrincipalReceiver The L2 address to receive principal assets
  /// @param l2YieldReceiver The L2 address to receive yield assets
  function bridgeAssetsToL2(address l2PrincipalReceiver, address l2YieldReceiver) external;

  /// @notice Retries a failed withdrawal bridge request
  /// @param bridgeRequestId The bridge request ID to retry
  function retryWithdrawal(bytes32 bridgeRequestId) external payable;

  // View functions
  /// @notice Returns the amount of assets available in the vault (not in strategy)
  /// @return The available asset amount
  function availableAssets() external view returns (uint256);

  /// @notice Returns the amount of assets currently in the strategy
  /// @return The strategy asset amount
  function strategyAssets() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";

/**
 * @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
 * The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
 * and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
 * itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
 * offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
 * of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
 * With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
 * underlying math can be found xref:ROOT:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 */
abstract contract ERC4626 is ERC20, IERC4626 {
    using Math for uint256;

    IERC20 private immutable _asset;
    uint8 private immutable _underlyingDecimals;

    /**
     * @dev Attempted to deposit more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);

    /**
     * @dev Attempted to mint more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);

    /**
     * @dev Attempted to withdraw more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);

    /**
     * @dev Attempted to redeem more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
     */
    constructor(IERC20 asset_) {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
        (bool success, bytes memory encodedDecimals) =
            address(asset_).staticcall(abi.encodeCall(IERC20Metadata.decimals, ()));
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /// @inheritdoc IERC4626
    function asset() public view virtual returns (address) {
        return address(_asset);
    }

    /// @inheritdoc IERC4626
    function totalAssets() public view virtual returns (uint256) {
        return IERC20(asset()).balanceOf(address(this));
    }

    /// @inheritdoc IERC4626
    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /// @inheritdoc IERC4626
    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /// @inheritdoc IERC4626
    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf(owner);
    }

    /// @inheritdoc IERC4626
    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function previewMint(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /// @inheritdoc IERC4626
    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /// @inheritdoc IERC4626
    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /// @inheritdoc IERC4626
    function mint(uint256 shares, address receiver) public virtual returns (uint256) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /// @inheritdoc IERC4626
    function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxAssets = maxWithdraw(owner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
        }

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /// @inheritdoc IERC4626
    function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxShares = maxRedeem(owner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
        }

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If asset() is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20.safeTransferFrom(IERC20(asset()), caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
        internal
        virtual
    {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If asset() is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20.safeTransfer(IERC20(asset()), receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC4626.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 12 of 32 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

interface IStrategy {
  // Custom Errors
  error Unauthorized();
  error InvalidState();
  error InsufficientBalance();
  error InvalidAmount();
  error InvalidAddress();
  error OperationFailed();

  // Events
  /// @notice Emitted when assets are allocated to the strategy
  event Allocated(uint256 amount);
  /// @notice Emitted when assets are deallocated from the strategy
  event Deallocated(uint256 amount);
  /// @notice Emitted when rewards are harvested
  event RewardsHarvested(uint256 amount);
  /// @notice Emitted when an emergency withdrawal occurs
  event EmergencyWithdrawal(uint256 amount);

  // Core functions
  /// @notice Allocates assets to the strategy
  /// @param amount The amount of assets to allocate
  /// @return The actual amount allocated
  function allocate(uint256 amount) external returns (uint256);

  /// @notice Deallocates assets from the strategy
  /// @param amount The amount of assets to deallocate
  /// @return The actual amount deallocated
  function deallocate(uint256 amount) external returns (uint256);

  /// @notice Initiates withdrawal of all assets from the strategy
  /// @return The amount being withdrawn
  function withdrawAll() external returns (uint256);

  /// @notice Completes a pending withdrawal
  /// @return The amount withdrawn
  function completeWithdrawal() external returns (uint256);

  // View functions
  /// @notice Returns the total assets managed by the strategy
  /// @return The total asset amount
  function totalAssets() external view returns (uint256);

  /// @notice Returns the vault address
  /// @return The vault address
  function vault() external view returns (address);

  /// @notice Returns the asset address
  /// @return The asset address
  function asset() external view returns (address);

  /// @notice Checks if there is a pending withdrawal
  /// @return True if there is a pending withdrawal
  function hasPendingWithdrawal() external view returns (bool);

  /// @notice Returns the pending withdrawal amount
  /// @return The pending withdrawal amount
  function pendingWithdrawalAmount() external view returns (uint256);
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

interface IBridgeRelayer {
  // Custom errors
  error Unauthorized();
  error InvalidAsset();
  error InvalidAmount();
  error InvalidRecipient();
  error InvalidState();
  error FeeInsufficient();

  // Bridge status lifecycle
  enum BridgeStatus {
    Pending,
    Completed,
    Failed
  }

  struct BridgeConfig {
    uint256 defaultGasLimit;
    uint256 maxFee; // in wei, used when non-zero fees apply
  }

  struct BridgeRequest {
    address vault;
    address asset;
    uint256 amount;
    address recipient;
    bool isClaim;
  }

  /// @notice Emitted when a bridge transfer is initiated
  event BridgeInitiated(
    bytes32 indexed bridgeRequestId,
    address indexed asset,
    uint256 amount,
    address indexed caller,
    address l2Recipient
  );

  /// @notice Emitted when a bridge request status is updated
  event BridgeStatusUpdated(bytes32 indexed bridgeRequestId, BridgeStatus status, bytes32 auxData);

  /// @notice Emitted when a vault's allowlist status is updated
  event VaultAllowlistUpdated(address indexed vault, bool allowed);

  /// @notice Emitted when a bridge request is retried
  event BridgeRetried(
    bytes32 indexed bridgeRequestId, address indexed vault, address indexed asset
  );

  /// @notice Sends a message to L2 to record a claim (without bridging assets)
  /// @param asset The asset address to claim on L2
  /// @param amount The amount to record for claiming
  /// @param recipient The L2 address that can claim the assets
  /// @param sponsorFee Whether to sponsor bridging fee or not by protocol.
  /// @return bridgeRequestId The unique identifier for this bridge request
  function claimAssetsOnL2(address asset, uint256 amount, address recipient, bool sponsorFee)
    external
    payable
    returns (bytes32 bridgeRequestId);

  /// @notice Retries a failed claim message to L2
  /// @param bridgeRequestId The bridge request ID to retry
  function retryClaimOnL2(bytes32 bridgeRequestId) external payable;

  /// @notice Bridges assets to L2
  /// @param asset The asset address to bridge
  /// @param amount The amount to bridge
  /// @param recipient The L2 recipient address
  /// @return bridgeRequestId The unique identifier for this bridge request
  function bridgeAssets(address asset, uint256 amount, address recipient)
    external
    returns (bytes32 bridgeRequestId);

  /// @notice Returns the status of a bridge request
  /// @param bridgeRequestId The bridge request ID
  /// @return status The current status of the bridge request
  function getBridgeStatus(bytes32 bridgeRequestId) external view returns (BridgeStatus status);

  /// @notice Returns the details of a bridge request
  /// @param bridgeRequestId The bridge request ID
  /// @return request The bridge request details
  function getBridgeRequest(bytes32 bridgeRequestId)
    external
    view
    returns (BridgeRequest memory request);

  /// @notice Estimates the fee required to bridge assets
  /// @param asset The asset to bridge
  /// @param amount The amount to bridge
  /// @return fee The estimated fee in wei
  function estimateBridgeFee(address asset, uint256 amount) external view returns (uint256 fee);

  /// @notice Returns the bridge configuration
  /// @return config The bridge configuration
  function bridgeConfig() external view returns (BridgeConfig memory config);

  /// @notice Checks if a vault is allowed to use the bridge
  /// @param vault The vault address to check
  /// @return allowed True if the vault is allowed
  function isVaultAllowed(address vault) external view returns (bool allowed);
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";

import {IBridgeRelayer} from "../interfaces/IBridgeRelayer.sol";

abstract contract BridgeRelayer is AccessControl, IBridgeRelayer {
  bytes32 public constant CONFIG_ROLE = keccak256("CONFIG_ROLE");

  mapping(address => bool) internal _vaultAllowlist;
  mapping(bytes32 => BridgeStatus) internal _bridgeStatuses;
  mapping(bytes32 => IBridgeRelayer.BridgeRequest) internal _bridgeRequests;

  BridgeConfig internal _config;
  uint256 internal _requestNonce;

  error NotImplemented();
  error MismatchedFeePassedValue(uint256 expected, uint256 actual);

  constructor(address admin, BridgeConfig memory config) {
    _grantRole(DEFAULT_ADMIN_ROLE, admin);
    _grantRole(CONFIG_ROLE, admin);
    _config = config;
  }

  /// @notice Sets whether a vault is allowed to use the bridge
  /// @param vault The vault address to update allowlist status for
  /// @param allowed True to allow, false to disallow
  function setVaultAllowed(address vault, bool allowed) external onlyRole(CONFIG_ROLE) {
    _vaultAllowlist[vault] = allowed;
    emit VaultAllowlistUpdated(vault, allowed);
  }

  /// @inheritdoc IBridgeRelayer
  function isVaultAllowed(address vault) public view override returns (bool allowed) {
    return _vaultAllowlist[vault];
  }

  /// @inheritdoc IBridgeRelayer
  function getBridgeStatus(bytes32 bridgeRequestId)
    public
    view
    override
    returns (BridgeStatus status)
  {
    return _bridgeStatuses[bridgeRequestId];
  }

  /// @inheritdoc IBridgeRelayer
  function estimateBridgeFee(address, uint256) public view virtual override returns (uint256 fee) {
    return 0;
  }

  /// @inheritdoc IBridgeRelayer
  function bridgeConfig() public view override returns (BridgeConfig memory config) {
    return _config;
  }

  /// @inheritdoc IBridgeRelayer
  function claimAssetsOnL2(address asset, uint256 amount, address recipient, bool sponsorFee)
    public
    payable
    virtual
    override
    returns (bytes32 bridgeRequestId)
  {
    _enforceAllowedCaller();
    _validateBridgeInputs(asset, amount, recipient);

    // Make sure that msg.value exactly matches the required fee for bridging.
    uint256 requiredFee = sponsorFee ? 0 : _config.maxFee;
    if (msg.value != requiredFee) {
      revert MismatchedFeePassedValue(requiredFee, msg.value);
    }

    bridgeRequestId = _claimAssetsOnL2(asset, amount, recipient);
    if (bridgeRequestId == bytes32(0)) {
      revert InvalidState();
    }

    _recordPending(bridgeRequestId, asset, amount, recipient, true);

    emit BridgeInitiated(bridgeRequestId, asset, amount, msg.sender, recipient);
  }

  /// @inheritdoc IBridgeRelayer
  function retryClaimOnL2(bytes32 bridgeRequestId) public payable virtual override {
    IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
    if (request.vault == address(0)) revert InvalidState();
    if (!request.isClaim) revert InvalidState();
    if (request.vault != msg.sender) revert Unauthorized();

    BridgeStatus status = _bridgeStatuses[bridgeRequestId];
    if (status == BridgeStatus.Completed) revert InvalidState();

    // For retry transactions, users are required to provide fee.
    if (msg.value < _config.maxFee) {
      revert MismatchedFeePassedValue(_config.maxFee, msg.value);
    }

    _retryClaimAssetsOnL2(bridgeRequestId, request);
    emit BridgeRetried(bridgeRequestId, msg.sender, request.asset);
  }

  /// @inheritdoc IBridgeRelayer
  function bridgeAssets(address asset, uint256 amount, address recipient)
    public
    virtual
    override
    returns (bytes32 bridgeRequestId)
  {
    _enforceAllowedCaller();
    _validateBridgeInputs(asset, amount, recipient);

    bridgeRequestId = _bridgeAssets(asset, amount, recipient);
    if (bridgeRequestId == bytes32(0)) {
      revert InvalidState();
    }

    _recordPending(bridgeRequestId, asset, amount, recipient, false);

    emit BridgeInitiated(bridgeRequestId, asset, amount, msg.sender, recipient);
  }

  /// @notice Enforces that the caller is an allowed vault
  function _enforceAllowedCaller() internal view {
    if (!_vaultAllowlist[msg.sender]) revert Unauthorized();
  }

  /// @notice Validates bridge input parameters
  /// @param asset The asset address to validate
  /// @param amount The amount to validate
  /// @param recipient The recipient address to validate
  function _validateBridgeInputs(address asset, uint256 amount, address recipient) internal pure {
    if (asset == address(0)) revert InvalidAsset();
    if (amount == 0) revert InvalidAmount();
    if (recipient == address(0)) revert InvalidRecipient();
  }

  /// @notice Records a pending bridge request
  /// @param bridgeRequestId The unique bridge request identifier
  /// @param asset The asset being bridged
  /// @param amount The amount of assets to record
  /// @param recipient The L2 recipient of the bridged assets
  /// @param isClaim Whether this is a claim (true) or asset bridge (false)
  function _recordPending(
    bytes32 bridgeRequestId,
    address asset,
    uint256 amount,
    address recipient,
    bool isClaim
  ) internal {
    _bridgeStatuses[bridgeRequestId] = BridgeStatus.Pending;
    _bridgeRequests[bridgeRequestId] = IBridgeRelayer.BridgeRequest({
      vault: msg.sender,
      asset: asset,
      amount: amount,
      recipient: recipient,
      isClaim: isClaim
    });
  }

  /// @notice Updates the status of a bridge request
  /// @param bridgeRequestId The bridge request ID
  /// @param status The new status
  /// @param auxData Additional data to emit with the status update
  function _updateStatus(bytes32 bridgeRequestId, BridgeStatus status, bytes32 auxData) internal {
    _bridgeStatuses[bridgeRequestId] = status;
    emit BridgeStatusUpdated(bridgeRequestId, status, auxData);
  }

  /// @notice Generates the next unique bridge request ID
  /// @param caller The address initiating the bridge request
  /// @param asset The asset being bridged
  /// @param amount The amount of assets being bridged
  /// @param recipient The L2 recipient of the bridged assets
  /// @return The unique bridge request ID
  function _nextBridgeRequestId(address caller, address asset, uint256 amount, address recipient)
    internal
    returns (bytes32)
  {
    unchecked {
      ++_requestNonce;
    }
    return keccak256(
      abi.encodePacked(address(this), caller, asset, amount, recipient, _requestNonce, block.number)
    );
  }

  /// @notice Marks a bridge request as completed
  /// @param bridgeRequestId The bridge request ID
  /// @param auxData Additional data to store
  function markBridgeCompleted(bytes32 bridgeRequestId, bytes32 auxData)
    external
    onlyRole(CONFIG_ROLE)
  {
    IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
    if (request.vault == address(0)) {
      revert InvalidState();
    }

    BridgeStatus current = _bridgeStatuses[bridgeRequestId];
    if (current == BridgeStatus.Completed) {
      revert InvalidState();
    }

    _updateStatus(bridgeRequestId, BridgeStatus.Completed, auxData);
  }

  /// @notice Marks a bridge request as failed
  /// @param bridgeRequestId The bridge request ID
  /// @param auxData Additional data to store
  function markBridgeFailed(bytes32 bridgeRequestId, bytes32 auxData)
    external
    onlyRole(CONFIG_ROLE)
  {
    IBridgeRelayer.BridgeRequest memory request = _bridgeRequests[bridgeRequestId];
    if (request.vault == address(0)) {
      revert InvalidState();
    }

    BridgeStatus current = _bridgeStatuses[bridgeRequestId];
    if (current == BridgeStatus.Failed) {
      revert InvalidState();
    }

    _updateStatus(bridgeRequestId, BridgeStatus.Failed, auxData);
  }

  /// @inheritdoc IBridgeRelayer
  function getBridgeRequest(bytes32 bridgeRequestId)
    public
    view
    override
    returns (IBridgeRelayer.BridgeRequest memory request)
  {
    request = _bridgeRequests[bridgeRequestId];
  }

  /// @notice Internal function to send claim message to L2 (implemented by child contracts)
  /// @param asset The asset to record for claiming
  /// @param amount The amount of assets to record for claiming on L2
  /// @param recipient The L2 address that can claim the assets
  /// @return The bridge request ID
  function _claimAssetsOnL2(address asset, uint256 amount, address recipient)
    internal
    virtual
    returns (bytes32);

  /// @notice Internal function to bridge assets to L2 (implemented by child contracts)
  /// @param asset The asset to bridge
  /// @param amount The amount of assets to bridge to L2
  /// @param recipient The L2 recipient of the bridged assets
  /// @return The bridge request ID
  function _bridgeAssets(address asset, uint256 amount, address recipient)
    internal
    virtual
    returns (bytes32);

  /// @notice Internal function to retry claim on L2 (implemented by child contracts)
  /// @param bridgeRequestId The bridge request ID
  /// @param request The bridge request details
  function _retryClaimAssetsOnL2(
    bytes32 bridgeRequestId,
    IBridgeRelayer.BridgeRequest memory request
  ) internal virtual;
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

interface ILineaTokenBridge {
  function bridgeToken(address token, uint256 amount, address to) external payable;
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

interface ILineaMessageService {
  function sendMessage(address to, uint256 fee, bytes calldata callData) external payable;

  function claimMessage(
    address from,
    address to,
    uint256 fee,
    uint256 value,
    address payable feeRecipient,
    bytes calldata callData,
    uint256 nonce
  ) external;

  function sender() external view returns (address);
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";

import {ILineaMessageService} from "./linea/ILineaMessageService.sol";
import {Action} from "@aragon/osx-commons-contracts/src/executors/IExecutor.sol";

interface IL2ClaimVault is IAccessControl {
  // ===== Errors =====
  error UnauthorizedCaller();
  error InvalidAmount();
  error InvalidRecipient();
  error AlreadyProcessed();
  error InvalidDepositId();
  error InsufficientLiquidity();
  error EthTransferFailed();
  error InvalidLengthMismatch();
  error NotContract();
  error TargetNotWhitelisted(address target);
  error InvalidValue();

  // ===== Events =====
  /// @notice Emitted when a claim is recorded for a user
  event ClaimRecorded(bytes32 indexed bridgeRequestId, address indexed recipient, uint256 amount);
  /// @notice Emitted when a claim is fulfilled and withdrawn
  event ClaimFulfilled(
    address indexed recipient, uint256 amount, Action[] actions, bytes[] execResults
  );
  /// @notice Emitted when a target's whitelist status is updated
  event WhitelistTargetSet(address indexed target, bool enabled);

  // ===== Core Functions =====
  /// @notice Records a claim for a recipient (called by the bridge)
  /// @dev Only callable by the authorized bridge relayer via the message service
  /// @param bridgeRequestId The unique identifier for the bridge request
  /// @param recipient The address that will be able to claim the funds
  /// @param amount The amount of assets to record for the claim
  function recordClaim(bytes32 bridgeRequestId, address recipient, uint256 amount) external;

  /// @notice Fulfills a claim by withdrawing recorded amounts with optional actions
  /// @dev Withdraws the full pending amount for msg.sender
  /// @param actions Optional array of actions to execute with the withdrawn funds
  function fulfillClaim(Action[] calldata actions) external payable;

  /// @notice Pauses the contract
  function pause() external;

  /// @notice Unpauses the contract
  function unpause() external;

  // ===== Views =====
  /// @notice Returns the asset address (address(0) for native ETH)
  /// @return The asset address
  function asset() external view returns (address);

  /// @notice Returns the Linea message service contract
  /// @return The message service contract
  function messageService() external view returns (ILineaMessageService);

  /// @notice Returns the L1 relayer address authorized to send claims
  /// @return The L1 relayer address
  function l1Relayer() external view returns (address);

  /// @notice Returns the total amount claimed by all users
  /// @return The total claimed amount
  function totalClaimed() external view returns (uint256);

  /// @notice Returns the available liquidity in the vault
  /// @return The available liquidity amount
  function availableLiquidity() external view returns (uint256);

  /// @notice Checks if a bridge request has been processed
  /// @param bridgeRequestId The bridge request identifier to check
  /// @return Whether the request has been processed
  function isClaimProcessed(bytes32 bridgeRequestId) external view returns (bool);
}

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.22;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IWETH is IERC20 {
  function deposit() external payable;

  function withdraw(uint256 amount) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 28 of 32 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 29 of 32 : IExecutor.sol
// SPDX-License-Identifier: AGPL-3.0-or-later

pragma solidity ^0.8.8;

/// @notice The action struct to be consumed by the DAO's `execute` function resulting in an external call.
/// @param to The address to call.
/// @param value The native token value to be sent with the call.
/// @param data The bytes-encoded function selector and calldata for the call.
struct Action {
    address to;
    uint256 value;
    bytes data;
}

/// @title IExecutor
/// @author Aragon X - 2024
/// @notice The interface required for Executors within the Aragon App DAO framework.
/// @custom:security-contact [email protected]
interface IExecutor {
    /// @notice Emitted when a proposal is executed.
    /// @dev The value of `callId` is defined by the component/contract calling the execute function.
    ///      A `Plugin` implementation can use it, for example, as a nonce.
    /// @param actor The address of the caller.
    /// @param callId The ID of the call.
    /// @param actions The array of actions executed.
    /// @param allowFailureMap The allow failure map encoding which actions are allowed to fail.
    /// @param failureMap The failure map encoding which actions have failed.
    /// @param execResults The array with the results of the executed actions.
    event Executed(
        address indexed actor,
        bytes32 callId,
        Action[] actions,
        uint256 allowFailureMap,
        uint256 failureMap,
        bytes[] execResults
    );

    /// @notice Executes a list of actions. If a zero allow-failure map is provided, a failing action reverts the entire execution. If a non-zero allow-failure map is provided, allowed actions can fail without the entire call being reverted.
    /// @param _callId The ID of the call. The definition of the value of `callId` is up to the calling contract and can be used, e.g., as a nonce.
    /// @param _actions The array of actions.
    /// @param _allowFailureMap A bitmap allowing execution to succeed, even if individual actions might revert. If the bit at index `i` is 1, the execution succeeds even if the `i`th action reverts. A failure map value of 0 requires every action to not revert.
    /// @return The array of results obtained from the executed actions in `bytes`.
    /// @return The resulting failure map containing the actions have actually failed.
    function execute(
        bytes32 _callId,
        Action[] memory _actions,
        uint256 _allowFailureMap
    ) external returns (bytes[] memory, uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 31 of 32 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 32 of 32 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "forge-std/=lib/forge-std/src/",
    "src/=src/",
    "test/=test/",
    "@aragon/osx-commons-contracts/=lib/osx-commons/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "osx-commons/=lib/osx-commons/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadySetup","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"deployer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"bridge","type":"address"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"uint256","name":"minDeposit","type":"uint256"},{"internalType":"uint256","name":"maxDeposit","type":"uint256"},{"internalType":"uint256","name":"maxTotalAssets","type":"uint256"}],"name":"setupVault","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a0604052348015600e575f5ffd5b50336080526080516109376100305f395f818160520152609b01526109375ff3fe608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80639d2094c014610038578063d5f394881461004d575b5f5ffd5b61004b61004636600461088f565b610090565b005b6100747f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b03909116815260200160405180910390f35b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146100d8576040516282b42960e81b815260040160405180910390fd5b5f5460ff16156100fb57604051637735869160e01b815260040160405180910390fd5b5f805460ff1916600190811790915560405163ab05a1e360e01b81526001600160a01b0388811660048301526024820192909252879187919082169063ab05a1e3906044015f604051808303815f87803b158015610157575f5ffd5b505af1158015610169573d5f5f3e3d5ffd5b50506040516346e8a40160e11b81526001600160a01b038a8116600483015285169250638dd1480291506024015f604051808303815f87803b1580156101ad575f5ffd5b505af11580156101bf573d5f5f3e3d5ffd5b50506040805160608101825288815260208101888152818301888152925163bbc86c8360e01b815291516004830152516024820152905160448201526001600160a01b038516925063bbc86c8391506064015f604051808303815f87803b158015610228575f5ffd5b505af115801561023a573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610289573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ad91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156102f2575f5ffd5b505af1158015610304573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610353573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061037791906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156103bc575f5ffd5b505af11580156103ce573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561041d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061044191906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561047d575f5ffd5b505af115801561048f573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050291906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561053e575f5ffd5b505af1158015610550573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c391906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b158015610608575f5ffd5b505af115801561061a573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068d91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156106d2575f5ffd5b505af11580156106e4573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610733573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061075791906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610793575f5ffd5b505af11580156107a5573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f4573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061081891906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610854575f5ffd5b505af1158015610866573d5f5f3e3d5ffd5b505050505050505050505050565b80356001600160a01b038116811461088a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108a4575f5ffd5b6108ad87610874565b95506108bb60208801610874565b94506108c960408801610874565b959894975094956060810135955060808101359460a0909101359350915050565b5f602082840312156108fa575f5ffd5b505191905056fea26469706673582212202360c80ca9dc99bf3bd9662617b1bfa750fc2068f80e12e8106b447061a3e10264736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80639d2094c014610038578063d5f394881461004d575b5f5ffd5b61004b61004636600461088f565b610090565b005b6100747f000000000000000000000000579514d75023b09bf82022dbdfaf918c7de858da81565b6040516001600160a01b03909116815260200160405180910390f35b336001600160a01b037f000000000000000000000000579514d75023b09bf82022dbdfaf918c7de858da16146100d8576040516282b42960e81b815260040160405180910390fd5b5f5460ff16156100fb57604051637735869160e01b815260040160405180910390fd5b5f805460ff1916600190811790915560405163ab05a1e360e01b81526001600160a01b0388811660048301526024820192909252879187919082169063ab05a1e3906044015f604051808303815f87803b158015610157575f5ffd5b505af1158015610169573d5f5f3e3d5ffd5b50506040516346e8a40160e11b81526001600160a01b038a8116600483015285169250638dd1480291506024015f604051808303815f87803b1580156101ad575f5ffd5b505af11580156101bf573d5f5f3e3d5ffd5b50506040805160608101825288815260208101888152818301888152925163bbc86c8360e01b815291516004830152516024820152905160448201526001600160a01b038516925063bbc86c8391506064015f604051808303815f87803b158015610228575f5ffd5b505af115801561023a573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610289573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ad91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156102f2575f5ffd5b505af1158015610304573d5f5f3e3d5ffd5b50505050816001600160a01b0316632f2ff15d836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610353573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061037791906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156103bc575f5ffd5b505af11580156103ce573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561041d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061044191906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561047d575f5ffd5b505af115801561048f573d5f5f3e3d5ffd5b50505050816001600160a01b03166336568abe836001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050291906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b15801561053e575f5ffd5b505af1158015610550573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561059f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c391906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b158015610608575f5ffd5b505af115801561061a573d5f5f3e3d5ffd5b50505050806001600160a01b0316632f2ff15d826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068d91906108ea565b6040516001600160e01b031960e084901b16815260048101919091526001600160a01b03891660248201526044015f604051808303815f87803b1580156106d2575f5ffd5b505af11580156106e4573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a217fddf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610733573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061075791906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610793575f5ffd5b505af11580156107a5573d5f5f3e3d5ffd5b50505050806001600160a01b03166336568abe826001600160a01b031663a4d19feb6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f4573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061081891906108ea565b6040516001600160e01b031960e084901b16815260048101919091523060248201526044015f604051808303815f87803b158015610854575f5ffd5b505af1158015610866573d5f5f3e3d5ffd5b505050505050505050505050565b80356001600160a01b038116811461088a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108a4575f5ffd5b6108ad87610874565b95506108bb60208801610874565b94506108c960408801610874565b959894975094956060810135955060808101359460a0909101359350915050565b5f602082840312156108fa575f5ffd5b505191905056fea26469706673582212202360c80ca9dc99bf3bd9662617b1bfa750fc2068f80e12e8106b447061a3e10264736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.