ETH Price: $2,888.49 (-1.75%)

Contract

0xEAcf8B19E104803cfCD2557D893D6a407E4994F0

Overview

ETH Balance

Linea Mainnet LogoLinea Mainnet LogoLinea Mainnet Logo0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

> 10 Internal Transactions found.

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
283050152026-01-25 17:54:3813 hrs ago1769363678
Rubyscore : Sign Check Module
0 ETH
283050152026-01-25 17:54:3813 hrs ago1769363678
Rubyscore : Sign Check Module
0 ETH
277788412026-01-13 4:16:0413 days ago1768277764
Rubyscore : Sign Check Module
0 ETH
277788412026-01-13 4:16:0413 days ago1768277764
Rubyscore : Sign Check Module
0 ETH
274084992026-01-04 9:49:4621 days ago1767520186
Rubyscore : Sign Check Module
0 ETH
274084992026-01-04 9:49:4621 days ago1767520186
Rubyscore : Sign Check Module
0 ETH
267544812025-12-16 11:50:5240 days ago1765885852
Rubyscore : Sign Check Module
0 ETH
267544812025-12-16 11:50:5240 days ago1765885852
Rubyscore : Sign Check Module
0 ETH
266218572025-12-13 2:59:5844 days ago1765594798
Rubyscore : Sign Check Module
0 ETH
266218572025-12-13 2:59:5844 days ago1765594798
Rubyscore : Sign Check Module
0 ETH
260744902025-11-27 7:49:0659 days ago1764229746
Rubyscore : Sign Check Module
0 ETH
260744902025-11-27 7:49:0659 days ago1764229746
Rubyscore : Sign Check Module
0 ETH
259507332025-11-23 18:19:3863 days ago1763921978
Rubyscore : Sign Check Module
0 ETH
259507332025-11-23 18:19:3863 days ago1763921978
Rubyscore : Sign Check Module
0 ETH
259353072025-11-23 7:26:5663 days ago1763882816
Rubyscore : Sign Check Module
0 ETH
259353072025-11-23 7:26:5663 days ago1763882816
Rubyscore : Sign Check Module
0 ETH
259093482025-11-22 10:28:5464 days ago1763807334
Rubyscore : Sign Check Module
0 ETH
259093482025-11-22 10:28:5464 days ago1763807334
Rubyscore : Sign Check Module
0 ETH
258507612025-11-20 16:25:1866 days ago1763655918
Rubyscore : Sign Check Module
0 ETH
258507612025-11-20 16:25:1866 days ago1763655918
Rubyscore : Sign Check Module
0 ETH
258390422025-11-20 8:30:3866 days ago1763627438
Rubyscore : Sign Check Module
0 ETH
258390422025-11-20 8:30:3866 days ago1763627438
Rubyscore : Sign Check Module
0 ETH
254366622025-11-09 2:19:0378 days ago1762654743
Rubyscore : Sign Check Module
0 ETH
254366622025-11-09 2:19:0378 days ago1762654743
Rubyscore : Sign Check Module
0 ETH
254330882025-11-08 23:30:2578 days ago1762644625
Rubyscore : Sign Check Module
0 ETH
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
RubyscoreSignCheckModule

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import {AbstractModule} from "../abstracts/AbstractModule.sol";
import {AttestationPayload} from "../interfaces/Structs.sol";
import {IPortalRegistry} from "../interfaces/IPortalRegistry.sol";
import {EIP712, ECDSA} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title Rubyscore Signature Check Module
 * @notice This module can be used by portal to
 *         require a signature from an authorized signer
 *         before issuing attestations.
 */
contract RubyscoreSignCheckModule is AbstractModule, EIP712, Ownable {
    using ECDSA for bytes32;

    string public constant NAME = "Rubyscore_SignCheckModule";
    string public constant VERSION = "0.0.1";

    address private signer;

    /// @notice Error thrown when an array length mismatch occurs
    error ArrayLengthMismatch();
    /// @notice Error thrown when a signer is not authorized by the module
    error SignerNotAuthorized();

    /// @notice Event emitted when the authorized signers are set
    event SignerAuthorized(address signer);

    /**
     * @notice Contract constructor sets the portal registry
     */
    constructor(address initialOwner, address _signer) EIP712(NAME, VERSION) {
        require(initialOwner != address(0), "Zero address check");
        require(_signer != address(0), "Zero address check");
        _transferOwnership(initialOwner);
        signer = _signer;
    }

    function getSigner() external view returns (address) {
        return signer;
    }

    /**
     * @notice Set the accepted status of schemaIds
     * @param _signer The signers to be set
     */
    function setAuthorizedSigners(address _signer) public onlyOwner {
        signer = _signer;
        emit SignerAuthorized(signer);
    }

    /**
     * @notice The main method for the module, running the check
     * @param _attestationPayload The Payload of the attestation
     * @param _validationPayload The validation payload required for the module
     */
    function run(
        AttestationPayload memory _attestationPayload,
        bytes memory _validationPayload,
        address _txSender,
        uint256 /*_value*/
    ) public view override {
        bytes32 digest = _hashTypedDataV4(
            keccak256(
                abi.encode(
                    keccak256(
                        "AttestationPayload(bytes32 schemaId,uint64 expirationDate,bytes subject,bytes attestationData)"
                    ),
                    _attestationPayload.schemaId,
                    _attestationPayload.expirationDate,
                    keccak256(abi.encode(_txSender)),
                    keccak256(_attestationPayload.attestationData)
                )
            )
        );
        if (signer != ECDSA.recover(digest, _validationPayload)) revert SignerNotAuthorized();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 16 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import {AttestationPayload} from "../interfaces/Structs.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";

/**
 * @title Abstract Module
 * @author Consensys
 * @notice Defines the minimal Module interface
 */
abstract contract AbstractModule is IERC165 {
    /// @notice Error thrown when someone else than the portal's owner is trying to revoke
    error OnlyPortalOwner();

    /**
     * @notice Executes the module's custom logic.
     * @param attestationPayload The incoming attestation data.
     * @param validationPayload Additional data required for verification.
     * @param txSender The transaction sender's address.
     * @param value The transaction value.
     */
    function run(
        AttestationPayload memory attestationPayload,
        bytes memory validationPayload,
        address txSender,
        uint256 value
    ) public virtual;

    /**
     * @notice Checks if the contract implements the Module interface.
     * @param interfaceID The ID of the interface to check.
     * @return A boolean indicating interface support.
     */
    function supportsInterface(bytes4 interfaceID) public view virtual override returns (bool) {
        return interfaceID == type(AbstractModule).interfaceId || interfaceID == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import {Portal} from "./Structs.sol";
import {IRouter} from "./IRouter.sol";

interface IPortalRegistry {
    function router() external view returns (IRouter);

    function portals(address id) external view returns (Portal memory);

    function issuers(address issuerAddress) external view returns (bool);

    function portalAddresses(uint256 index) external view returns (address);

    function initialize() external;

    function updateRouter(address _router) external;

    function setIssuer(address issuer) external;

    function removeIssuer(address issuer) external;

    function isIssuer(address issuer) external view returns (bool);

    function register(
        address id,
        string memory name,
        string memory description,
        bool isRevocable,
        string memory ownerName
    ) external;

    function revoke(address id) external;

    function deployDefaultPortal(
        address[] calldata modules,
        string memory name,
        string memory description,
        bool isRevocable,
        string memory ownerName
    ) external;

    function getPortalByAddress(address id) external view returns (Portal memory);

    function isRegistered(address id) external view returns (bool);

    function getPortalsCount() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/**
 * @title Router
 * @author Consensys
 * @notice This contract aims to provides a single entrypoint for the Verax registries
 */
interface IRouter {
    /**
     * @notice Gives the address for the AttestationRegistry contract
     * @return The current address of the AttestationRegistry contract
     */
    function getAttestationRegistry() external view returns (address);

    /**
     * @notice Gives the address for the ModuleRegistry contract
     * @return The current address of the ModuleRegistry contract
     */
    function getModuleRegistry() external view returns (address);

    /**
     * @notice Gives the address for the PortalRegistry contract
     * @return The current address of the PortalRegistry contract
     */
    function getPortalRegistry() external view returns (address);

    /**
     * @notice Gives the address for the SchemaRegistry contract
     * @return The current address of the SchemaRegistry contract
     */
    function getSchemaRegistry() external view returns (address);
}

File 16 of 16 : Structs.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

struct AttestationPayload {
    bytes32 schemaId; // The identifier of the schema this attestation adheres to.
    uint64 expirationDate; // The expiration date of the attestation.
    bytes subject; // The ID of the attestee, EVM address, DID, URL etc.
    bytes attestationData; // The attestation data.
}

struct Attestation {
    bytes32 attestationId; // The unique identifier of the attestation.
    bytes32 schemaId; // The identifier of the schema this attestation adheres to.
    bytes32 replacedBy; // Whether the attestation was replaced by a new one.
    address attester; // The address issuing the attestation to the subject.
    address portal; // The id of the portal that created the attestation.
    uint64 attestedDate; // The date the attestation is issued.
    uint64 expirationDate; // The expiration date of the attestation.
    uint64 revocationDate; // The date when the attestation was revoked.
    uint16 version; // Version of the registry when the attestation was created.
    bool revoked; // Whether the attestation is revoked or not.
    bytes subject; // The ID of the attestee, EVM address, DID, URL etc.
    bytes attestationData; // The attestation data.
}

struct Schema {
    string name; // The name of the schema.
    string description; // A description of the schema.
    string context; // The context of the schema.
    string schema; // The schema definition.
}

struct Portal {
    address id; // The unique identifier of the portal.
    address ownerAddress; // The address of the owner of this portal.
    address[] modules; // Addresses of modules implemented by the portal.
    bool isRevocable; // Whether attestations issued can be revoked.
    string name; // The name of the portal.
    string description; // A description of the portal.
    string ownerName; // The name of the owner of this portal.
}

struct Module {
    address moduleAddress; // The address of the module.
    string name; // The name of the module.
    string description; // A description of the module.
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"_signer","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"OnlyPortalOwner","type":"error"},{"inputs":[],"name":"SignerNotAuthorized","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signer","type":"address"}],"name":"SignerAuthorized","type":"event"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"schemaId","type":"bytes32"},{"internalType":"uint64","name":"expirationDate","type":"uint64"},{"internalType":"bytes","name":"subject","type":"bytes"},{"internalType":"bytes","name":"attestationData","type":"bytes"}],"internalType":"struct AttestationPayload","name":"_attestationPayload","type":"tuple"},{"internalType":"bytes","name":"_validationPayload","type":"bytes"},{"internalType":"address","name":"_txSender","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"run","outputs":[],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setAuthorizedSigners","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceID","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101606040523480156200001257600080fd5b506040516200131c3803806200131c833981016040819052620000359162000301565b604080518082018252601981527f5275627973636f72655f5369676e436865636b4d6f64756c650000000000000060208083019190915282518084019093526005835264302e302e3160d81b90830152906200009382600062000216565b61012052620000a481600162000216565b61014052815160208084019190912060e052815190820120610100524660a0526200013260e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b60805250503060c05262000146336200024f565b6001600160a01b038216620001975760405162461bcd60e51b81526020600482015260126024820152715a65726f206164647265737320636865636b60701b60448201526064015b60405180910390fd5b6001600160a01b038116620001e45760405162461bcd60e51b81526020600482015260126024820152715a65726f206164647265737320636865636b60701b60448201526064016200018e565b620001ef826200024f565b600380546001600160a01b0319166001600160a01b0392909216919091179055506200051f565b600060208351101562000236576200022e83620002a1565b905062000249565b81620002438482620003de565b5060ff90505b92915050565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600080829050601f81511115620002cf578260405163305a27a960e01b81526004016200018e9190620004aa565b8051620002dc82620004fa565b179392505050565b80516001600160a01b0381168114620002fc57600080fd5b919050565b600080604083850312156200031557600080fd5b6200032083620002e4565b91506200033060208401620002e4565b90509250929050565b634e487b7160e01b600052604160045260246000fd5b600181811c908216806200036457607f821691505b6020821081036200038557634e487b7160e01b600052602260045260246000fd5b50919050565b601f821115620003d957600081815260208120601f850160051c81016020861015620003b45750805b601f850160051c820191505b81811015620003d557828155600101620003c0565b5050505b505050565b81516001600160401b03811115620003fa57620003fa62000339565b62000412816200040b84546200034f565b846200038b565b602080601f8311600181146200044a5760008415620004315750858301515b600019600386901b1c1916600185901b178555620003d5565b600085815260208120601f198616915b828110156200047b578886015182559484019460019091019084016200045a565b50858210156200049a5787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b600060208083528351808285015260005b81811015620004d957858101830151858201604001528201620004bb565b506000604082860101526040601f19601f8301168501019250505092915050565b80516020808301519190811015620003855760001960209190910360031b1b16919050565b60805160a05160c05160e051610100516101205161014051610da26200057a60003960006103a90152600061037f015260006106f9015260006106d10152600061062c01526000610656015260006106800152610da26000f3fe608060405234801561001057600080fd5b506004361061009e5760003560e01c806384b0196e1161006657806384b0196e146101205780638da5cb5b1461013b578063a3f4df7e1461014c578063f2fde38b14610195578063ffa1ad74146101a857600080fd5b806301ffc9a7146100a3578063378144b0146100cb578063432c1625146100e0578063715018a6146100f35780637ac3c02f146100fb575b600080fd5b6100b66100b1366004610a09565b6101cc565b60405190151581526020015b60405180910390f35b6100de6100d9366004610b22565b610203565b005b6100de6100ee366004610c12565b610301565b6100de61035d565b6003546001600160a01b03165b6040516001600160a01b0390911681526020016100c2565b610128610371565b6040516100c29796959493929190610c73565b6002546001600160a01b0316610108565b6101886040518060400160405280601981526020017f5275627973636f72655f5369676e436865636b4d6f64756c650000000000000081525081565b6040516100c29190610d09565b6100de6101a3366004610c12565b6103f9565b61018860405180604001604052806005815260200164302e302e3160d81b81525081565b60006001600160e01b0319821663367e8d1760e01b14806101fd57506001600160e01b031982166301ffc9a760e01b145b92915050565b60006102c07ff0e9a64d3fffa41ed2083556103227aee77b907d432c6ac0d1263fc416693f63866000015187602001518660405160200161025391906001600160a01b0391909116815260200190565b60408051601f1981840301815282825280516020918201206060808e0151805190840120928501979097529183019490945267ffffffffffffffff90921693810193909352608083015260a082015260c00160405160208183030381529060405280519060200120610477565b90506102cc81856104a4565b6003546001600160a01b039081169116146102fa576040516311c3376b60e11b815260040160405180910390fd5b5050505050565b6103096104c8565b600380546001600160a01b0319166001600160a01b0383169081179091556040519081527fc2f263c027e5d0d20cb69b6068f2144a6ce1b7d1369fdc782788faae4bc63db29060200160405180910390a150565b6103656104c8565b61036f6000610522565b565b6000606080828080836103a47f000000000000000000000000000000000000000000000000000000000000000083610574565b6103cf7f00000000000000000000000000000000000000000000000000000000000000006001610574565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b6104016104c8565b6001600160a01b03811661046b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b61047481610522565b50565b60006101fd61048461061f565b8360405161190160f01b8152600281019290925260228201526042902090565b60008060006104b3858561074f565b915091506104c081610794565b509392505050565b6002546001600160a01b0316331461036f5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610462565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b606060ff831461058e57610587836108de565b90506101fd565b81805461059a90610d1c565b80601f01602080910402602001604051908101604052809291908181526020018280546105c690610d1c565b80156106135780601f106105e857610100808354040283529160200191610613565b820191906000526020600020905b8154815290600101906020018083116105f657829003601f168201915b505050505090506101fd565b6000306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561067857507f000000000000000000000000000000000000000000000000000000000000000046145b156106a257507f000000000000000000000000000000000000000000000000000000000000000090565b61074a604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b60008082516041036107855760208301516040840151606085015160001a6107798782858561091d565b9450945050505061078d565b506000905060025b9250929050565b60008160048111156107a8576107a8610d56565b036107b05750565b60018160048111156107c4576107c4610d56565b036108115760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610462565b600281600481111561082557610825610d56565b036108725760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610462565b600381600481111561088657610886610d56565b036104745760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610462565b606060006108eb836109e1565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561095457506000905060036109d8565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109a8573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109d1576000600192509250506109d8565b9150600090505b94509492505050565b600060ff8216601f8111156101fd57604051632cd44ac360e21b815260040160405180910390fd5b600060208284031215610a1b57600080fd5b81356001600160e01b031981168114610a3357600080fd5b9392505050565b634e487b7160e01b600052604160045260246000fd5b6040516080810167ffffffffffffffff81118282101715610a7357610a73610a3a565b60405290565b600082601f830112610a8a57600080fd5b813567ffffffffffffffff80821115610aa557610aa5610a3a565b604051601f8301601f19908116603f01168101908282118183101715610acd57610acd610a3a565b81604052838152866020858801011115610ae657600080fd5b836020870160208301376000602085830101528094505050505092915050565b80356001600160a01b0381168114610b1d57600080fd5b919050565b60008060008060808587031215610b3857600080fd5b843567ffffffffffffffff80821115610b5057600080fd5b9086019060808289031215610b6457600080fd5b610b6c610a50565b8235815260208301358281168114610b8357600080fd5b6020820152604083013582811115610b9a57600080fd5b610ba68a828601610a79565b604083015250606083013582811115610bbe57600080fd5b610bca8a828601610a79565b60608301525095506020870135915080821115610be657600080fd5b50610bf387828801610a79565b935050610c0260408601610b06565b9396929550929360600135925050565b600060208284031215610c2457600080fd5b610a3382610b06565b6000815180845260005b81811015610c5357602081850181015186830182015201610c37565b506000602082860101526020601f19601f83011685010191505092915050565b60ff60f81b881681526000602060e081840152610c9360e084018a610c2d565b8381036040850152610ca5818a610c2d565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825283870192509083019060005b81811015610cf757835183529284019291840191600101610cdb565b50909c9b505050505050505050505050565b602081526000610a336020830184610c2d565b600181811c90821680610d3057607f821691505b602082108103610d5057634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220d943e706ed330c01f8962e116fca59b27e243ae6a00ca755f2930ecf5c95621364736f6c6343000813003300000000000000000000000072f46ffbd3213218137015ebccf70bfaaf619513000000000000000000000000381c031baa5995d0cc52386508050ac947780815

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061009e5760003560e01c806384b0196e1161006657806384b0196e146101205780638da5cb5b1461013b578063a3f4df7e1461014c578063f2fde38b14610195578063ffa1ad74146101a857600080fd5b806301ffc9a7146100a3578063378144b0146100cb578063432c1625146100e0578063715018a6146100f35780637ac3c02f146100fb575b600080fd5b6100b66100b1366004610a09565b6101cc565b60405190151581526020015b60405180910390f35b6100de6100d9366004610b22565b610203565b005b6100de6100ee366004610c12565b610301565b6100de61035d565b6003546001600160a01b03165b6040516001600160a01b0390911681526020016100c2565b610128610371565b6040516100c29796959493929190610c73565b6002546001600160a01b0316610108565b6101886040518060400160405280601981526020017f5275627973636f72655f5369676e436865636b4d6f64756c650000000000000081525081565b6040516100c29190610d09565b6100de6101a3366004610c12565b6103f9565b61018860405180604001604052806005815260200164302e302e3160d81b81525081565b60006001600160e01b0319821663367e8d1760e01b14806101fd57506001600160e01b031982166301ffc9a760e01b145b92915050565b60006102c07ff0e9a64d3fffa41ed2083556103227aee77b907d432c6ac0d1263fc416693f63866000015187602001518660405160200161025391906001600160a01b0391909116815260200190565b60408051601f1981840301815282825280516020918201206060808e0151805190840120928501979097529183019490945267ffffffffffffffff90921693810193909352608083015260a082015260c00160405160208183030381529060405280519060200120610477565b90506102cc81856104a4565b6003546001600160a01b039081169116146102fa576040516311c3376b60e11b815260040160405180910390fd5b5050505050565b6103096104c8565b600380546001600160a01b0319166001600160a01b0383169081179091556040519081527fc2f263c027e5d0d20cb69b6068f2144a6ce1b7d1369fdc782788faae4bc63db29060200160405180910390a150565b6103656104c8565b61036f6000610522565b565b6000606080828080836103a47f5275627973636f72655f5369676e436865636b4d6f64756c650000000000001983610574565b6103cf7f302e302e310000000000000000000000000000000000000000000000000000056001610574565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b6104016104c8565b6001600160a01b03811661046b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b61047481610522565b50565b60006101fd61048461061f565b8360405161190160f01b8152600281019290925260228201526042902090565b60008060006104b3858561074f565b915091506104c081610794565b509392505050565b6002546001600160a01b0316331461036f5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610462565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b606060ff831461058e57610587836108de565b90506101fd565b81805461059a90610d1c565b80601f01602080910402602001604051908101604052809291908181526020018280546105c690610d1c565b80156106135780601f106105e857610100808354040283529160200191610613565b820191906000526020600020905b8154815290600101906020018083116105f657829003601f168201915b505050505090506101fd565b6000306001600160a01b037f000000000000000000000000eacf8b19e104803cfcd2557d893d6a407e4994f01614801561067857507f000000000000000000000000000000000000000000000000000000000000e70846145b156106a257507f8eafa230e9dce8d6c30f833fae9e71afef4195be817484872b9b9ed5369e4b9f90565b61074a604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f3f77b8ee6f00a81abe90aaeddb04c5c1286e34db39f8293f14483c9387230d41918101919091527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b60008082516041036107855760208301516040840151606085015160001a6107798782858561091d565b9450945050505061078d565b506000905060025b9250929050565b60008160048111156107a8576107a8610d56565b036107b05750565b60018160048111156107c4576107c4610d56565b036108115760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610462565b600281600481111561082557610825610d56565b036108725760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610462565b600381600481111561088657610886610d56565b036104745760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610462565b606060006108eb836109e1565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083111561095457506000905060036109d8565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109a8573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109d1576000600192509250506109d8565b9150600090505b94509492505050565b600060ff8216601f8111156101fd57604051632cd44ac360e21b815260040160405180910390fd5b600060208284031215610a1b57600080fd5b81356001600160e01b031981168114610a3357600080fd5b9392505050565b634e487b7160e01b600052604160045260246000fd5b6040516080810167ffffffffffffffff81118282101715610a7357610a73610a3a565b60405290565b600082601f830112610a8a57600080fd5b813567ffffffffffffffff80821115610aa557610aa5610a3a565b604051601f8301601f19908116603f01168101908282118183101715610acd57610acd610a3a565b81604052838152866020858801011115610ae657600080fd5b836020870160208301376000602085830101528094505050505092915050565b80356001600160a01b0381168114610b1d57600080fd5b919050565b60008060008060808587031215610b3857600080fd5b843567ffffffffffffffff80821115610b5057600080fd5b9086019060808289031215610b6457600080fd5b610b6c610a50565b8235815260208301358281168114610b8357600080fd5b6020820152604083013582811115610b9a57600080fd5b610ba68a828601610a79565b604083015250606083013582811115610bbe57600080fd5b610bca8a828601610a79565b60608301525095506020870135915080821115610be657600080fd5b50610bf387828801610a79565b935050610c0260408601610b06565b9396929550929360600135925050565b600060208284031215610c2457600080fd5b610a3382610b06565b6000815180845260005b81811015610c5357602081850181015186830182015201610c37565b506000602082860101526020601f19601f83011685010191505092915050565b60ff60f81b881681526000602060e081840152610c9360e084018a610c2d565b8381036040850152610ca5818a610c2d565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825283870192509083019060005b81811015610cf757835183529284019291840191600101610cdb565b50909c9b505050505050505050505050565b602081526000610a336020830184610c2d565b600181811c90821680610d3057607f821691505b602082108103610d5057634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220d943e706ed330c01f8962e116fca59b27e243ae6a00ca755f2930ecf5c95621364736f6c63430008130033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000072f46ffbd3213218137015ebccf70bfaaf619513000000000000000000000000381c031baa5995d0cc52386508050ac947780815

-----Decoded View---------------
Arg [0] : initialOwner (address): 0x72f46FFBd3213218137015EBCcf70bFAaF619513
Arg [1] : _signer (address): 0x381c031bAA5995D0Cc52386508050Ac947780815

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000072f46ffbd3213218137015ebccf70bfaaf619513
Arg [1] : 000000000000000000000000381c031baa5995d0cc52386508050ac947780815


Block Transaction Gas Used Reward
view all blocks sequenced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.