Contract Name:
OpenFundMarket
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library CountersUpgradeable {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/MathUpgradeable.sol";
/**
* @dev String operations.
*/
library StringsUpgradeable {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = MathUpgradeable.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, MathUpgradeable.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAddressResolver {
function getAddress(bytes32 name) external view returns (address);
function getRequiredAddress(bytes32 name, string calldata reason) external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "./IAddressResolver.sol";
abstract contract ResolverCache is Initializable {
IAddressResolver public resolver;
mapping(bytes32 => address) private _addressCache;
function __ResolverCache_init(address resolver_) internal onlyInitializing {
resolver = IAddressResolver(resolver_);
}
function getAddress(bytes32 name_) public view returns (address) {
return _addressCache[name_];
}
function getRequiredAddress(bytes32 name_, string memory reason_) public view returns (address) {
address addr = getAddress(name_);
require(addr != address(0), reason_);
return addr;
}
function rebuildCache() public virtual {
bytes32[] memory requiredAddresses = _resolverAddressesRequired();
for (uint256 i = 0; i < requiredAddresses.length; i++) {
bytes32 name = requiredAddresses[i];
address addr = resolver.getRequiredAddress(name, "AddressCache: address not found");
_addressCache[name] = addr;
}
}
function isResolverCached() external view returns (bool) {
bytes32[] memory requiredAddresses = _resolverAddressesRequired();
for (uint256 i = 0; i < requiredAddresses.length; i++) {
bytes32 name = requiredAddresses[i];
// false if our cache is invalid or if the resolver doesn't have the required address
if (resolver.getAddress(name) != _addressCache[name] || _addressCache[name] == address(0)) {
return false;
}
}
return true;
}
function _combineArrays(bytes32[] memory first, bytes32[] memory second)
internal
pure
returns (bytes32[] memory combination)
{
combination = new bytes32[](first.length + second.length);
for (uint i = 0; i < first.length; i++) {
combination[i] = first[i];
}
for (uint j = 0; j < second.length; j++) {
combination[first.length + j] = second[j];
}
}
function _resolverAddressesRequired() internal view virtual returns (bytes32[] memory addresses) {}
uint256[48] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "@solvprotocol/erc-3525/ERC3525Upgradeable.sol";
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTConcreteUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IFCFSMultiRepayableConcrete.sol";
abstract contract FCFSMultiRepayableConcrete is IFCFSMultiRepayableConcrete, BaseSFTConcreteUpgradeable {
mapping(uint256 => SlotRepayInfo) internal _slotRepayInfo;
mapping(address => uint256) public allocatedCurrencyBalance;
uint32 internal constant REPAY_RATE_SCALAR = 1e8;
mapping(uint256 => SlotValueInfo) internal _slotValueInfo;
function repayOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override onlyDelegate {
_beforeRepay(txSender_, slot_, currency_, repayCurrencyAmount_);
_slotRepayInfo[slot_].repaidCurrencyAmount += repayCurrencyAmount_;
_slotRepayInfo[slot_].currencyBalance += repayCurrencyAmount_;
allocatedCurrencyBalance[currency_] += repayCurrencyAmount_;
}
function repayWithBalanceOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override onlyDelegate {
_beforeRepayWithBalance(txSender_, slot_, currency_, repayCurrencyAmount_);
uint256 balance = ERC20(currency_).balanceOf(delegate());
require(repayCurrencyAmount_ <= balance - allocatedCurrencyBalance[currency_], "MultiRepayableConcrete: insufficient unallocated balance");
_slotRepayInfo[slot_].repaidCurrencyAmount += repayCurrencyAmount_;
_slotRepayInfo[slot_].currencyBalance += repayCurrencyAmount_;
allocatedCurrencyBalance[currency_] += repayCurrencyAmount_;
}
function mintOnlyDelegate(uint256 /** tokenId_ */, uint256 slot_, uint256 mintValue_) external virtual override onlyDelegate {
_slotValueInfo[slot_].slotInitialValue += mintValue_;
_slotValueInfo[slot_].slotTotalValue += mintValue_;
}
function claimOnlyDelegate(uint256 tokenId_, uint256 slot_, address currency_, uint256 claimValue_) external virtual override onlyDelegate returns (uint256 claimCurrencyAmount_) {
_beforeClaim(tokenId_, slot_, currency_, claimValue_);
require(claimValue_ <= claimableValue(tokenId_), "MR: insufficient claimable value");
_slotValueInfo[slot_].slotTotalValue -= claimValue_;
uint8 valueDecimals = ERC3525Upgradeable(delegate()).valueDecimals();
claimCurrencyAmount_ = claimValue_ * _repayRate(slot_) / (10 ** valueDecimals);
require(claimCurrencyAmount_ <= _slotRepayInfo[slot_].currencyBalance, "MR: insufficient repaid currency amount");
allocatedCurrencyBalance[currency_] -= claimCurrencyAmount_;
_slotRepayInfo[slot_].currencyBalance -= claimCurrencyAmount_;
}
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) external virtual override onlyDelegate {
_beforeTransfer(fromTokenId_, toTokenId_, fromTokenBalance_, transferValue_);
}
function claimableValue(uint256 tokenId_) public view virtual override returns (uint256) {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
uint256 balance = ERC3525Upgradeable(delegate()).balanceOf(tokenId_);
uint8 valueDecimals = ERC3525Upgradeable(delegate()).valueDecimals();
uint256 dueAmount = balance * _repayRate(slot) / (10 ** valueDecimals);
return dueAmount < _slotRepayInfo[slot].currencyBalance ? balance :
_slotRepayInfo[slot].currencyBalance * (10 ** valueDecimals) / _repayRate(slot);
}
function slotRepaidCurrencyAmount(uint256 slot_) public view virtual override returns (uint256) {
return _slotRepayInfo[slot_].repaidCurrencyAmount;
}
function slotCurrencyBalance(uint256 slot_) public view virtual override returns (uint256) {
return _slotRepayInfo[slot_].currencyBalance;
}
function slotInitialValue(uint256 slot_) public view virtual override returns (uint256) {
return _slotValueInfo[slot_].slotInitialValue;
}
function slotTotalValue(uint256 slot_) public view virtual override returns (uint256) {
return _slotValueInfo[slot_].slotTotalValue;
}
function _currency(uint256 slot_) internal view virtual returns (address);
function _repayRate(uint256 slot_) internal view virtual returns (uint256);
function _beforeRepay(address /** txSender_ */, uint256 slot_, address currency_, uint256 /** repayCurrencyAmount_ */) internal virtual {
require(currency_ == _currency(slot_), "FMR: invalid currency");
}
function _beforeRepayWithBalance(address /** txSender_ */, uint256 slot_, address currency_, uint256 /** repayCurrencyAmount_ */) internal virtual {
require(currency_ == _currency(slot_), "FMR: invalid currency");
}
function _beforeClaim(uint256 /** tokenId_ */, uint256 slot_, address currency_, uint256 /** claimValue_ */) internal virtual {
require(currency_ == _currency(slot_), "FMR: invalid currency");
}
function _beforeTransfer(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) internal virtual {}
uint256[46] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTDelegateUpgradeable.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC20TransferHelper.sol";
import "./IFCFSMultiRepayableDelegate.sol";
import "./IFCFSMultiRepayableConcrete.sol";
abstract contract FCFSMultiRepayableDelegate is IFCFSMultiRepayableDelegate, BaseSFTDelegateUpgradeable {
function repay(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override nonReentrant {
IFCFSMultiRepayableConcrete(concrete()).repayOnlyDelegate(_msgSender(), slot_, currency_, repayCurrencyAmount_);
ERC20TransferHelper.doTransferIn(currency_, _msgSender(), repayCurrencyAmount_);
emit Repay(slot_, _msgSender(), currency_, repayCurrencyAmount_);
}
function repayWithBalance(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override nonReentrant {
require(allowRepayWithBalance(), "MultiRepayableDelegate: cannot repay with balance");
IFCFSMultiRepayableConcrete(concrete()).repayWithBalanceOnlyDelegate(_msgSender(), slot_, currency_, repayCurrencyAmount_);
emit Repay(slot_, _msgSender(), currency_, repayCurrencyAmount_);
}
function claimTo(address to_, uint256 tokenId_, address currency_, uint256 claimValue_) external virtual override nonReentrant {
require(claimValue_ > 0, "MultiRepayableDelegate: claim value is zero");
require(_isApprovedOrOwner(_msgSender(), tokenId_), "MultiRepayableDelegate: caller is not owner nor approved");
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
uint256 claimableValue = IFCFSMultiRepayableConcrete(concrete()).claimableValue(tokenId_);
require(claimValue_ <= claimableValue, "MultiRepayableDelegate: over claim");
uint256 claimCurrencyAmount = IFCFSMultiRepayableConcrete(concrete()).claimOnlyDelegate(tokenId_, slot, currency_, claimValue_);
if (claimValue_ == ERC3525Upgradeable.balanceOf(tokenId_)) {
ERC3525Upgradeable._burn(tokenId_);
} else {
ERC3525Upgradeable._burnValue(tokenId_, claimValue_);
}
ERC20TransferHelper.doTransferOut(currency_, payable(to_), claimCurrencyAmount);
emit Claim(to_, tokenId_, claimValue_, currency_, claimCurrencyAmount);
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override(ERC3525SlotEnumerableUpgradeable) {
super._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
if (from_ == address(0) && fromTokenId_ == 0) {
IFCFSMultiRepayableConcrete(concrete()).mintOnlyDelegate(toTokenId_, slot_, value_);
}
if (from_ != address(0) && fromTokenId_ != 0 && to_ != address(0) && toTokenId_ != 0) {
IFCFSMultiRepayableConcrete(concrete()).transferOnlyDelegate(fromTokenId_, toTokenId_,
ERC3525Upgradeable.balanceOf(fromTokenId_), value_);
}
}
function allowRepayWithBalance() public view virtual returns (bool) {
return true;
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IFCFSMultiRepayableConcrete {
struct SlotRepayInfo {
uint256 repaidCurrencyAmount;
uint256 currencyBalance;
}
struct SlotValueInfo {
uint256 slotInitialValue;
uint256 slotTotalValue;
}
function repayOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function repayWithBalanceOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function mintOnlyDelegate(uint256 tokenId_, uint256 slot_, uint256 mintValue_) external;
function claimOnlyDelegate(uint256 tokenId_, uint256 slot_, address currency_, uint256 claimValue_) external returns (uint256);
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) external;
function slotRepaidCurrencyAmount(uint256 slot_) external view returns (uint256);
function slotCurrencyBalance(uint256 slot_) external view returns (uint256);
function slotInitialValue(uint256 slot_) external view returns (uint256);
function slotTotalValue(uint256 slot_) external view returns (uint256);
function claimableValue(uint256 tokenId_) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IFCFSMultiRepayableDelegate {
event Repay(uint256 indexed slot, address indexed payer, address currency, uint256 repayCurrencyAmount);
event Claim(address indexed to, uint256 indexed tokenId, uint256 claimValue, address currency, uint256 claimCurrencyAmount);
function repay(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function repayWithBalance(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function claimTo(address to_, uint256 tokenId_, address currency_, uint256 claimValue_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ISFTIssuableConcrete {
function createSlotOnlyDelegate(address txSender_, bytes calldata inputSlotInfo_) external returns (uint256 slot_);
function mintOnlyDelegate(address txSender_, address currency_, address mintTo_, uint256 slot_, uint256 tokenId_, uint256 amount_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ISFTIssuableDelegate {
function createSlotOnlyIssueMarket(address txSender, bytes calldata inputSlotInfo) external returns(uint256 slot);
function mintOnlyIssueMarket(address txSender, address currency, address mintTo, uint256 slot, uint256 value) external payable returns(uint256 tokenId);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTConcreteUpgradeable.sol";
import "./ISFTIssuableDelegate.sol";
import "./ISFTIssuableConcrete.sol";
abstract contract SFTIssuableConcrete is ISFTIssuableConcrete, BaseSFTConcreteUpgradeable {
function __SFTIssuableConcrete_init() internal onlyInitializing {
__BaseSFTConcrete_init();
}
function __SFTIssuableConcrete_init_unchained() internal onlyInitializing {
}
function createSlotOnlyDelegate(address txSender_, bytes calldata inputSlotInfo_) external virtual override onlyDelegate returns (uint256 slot_) {
slot_ = _createSlot(txSender_, inputSlotInfo_);
require(slot_ != 0, "SFTIssuableConcrete: invalid slot");
}
function mintOnlyDelegate(address txSender_, address currency_, address mintTo_, uint256 slot_, uint256 tokenId_, uint256 amount_)
external virtual override onlyDelegate {
_mint(txSender_, currency_, mintTo_, slot_, tokenId_, amount_);
}
function _createSlot(address txSender_, bytes memory inputSlotInfo_) internal virtual returns (uint256 slot_);
function _mint(address txSender_, address currency_, address mintTo_, uint256 slot_, uint256 tokenId_, uint256 amount_) internal virtual;
uint256[50] private __gap;
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "@solvprotocol/contracts-v3-address-resolver/contracts/ResolverCache.sol";
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTDelegateUpgradeable.sol";
import "./ISFTIssuableDelegate.sol";
import "./ISFTIssuableConcrete.sol";
abstract contract SFTIssuableDelegate is ISFTIssuableDelegate, BaseSFTDelegateUpgradeable, ResolverCache {
function __SFTIssuableDelegate_init(address resolver_, string memory name_, string memory symbol_, uint8 decimals_,
address concrete_, address metadata_, address owner_) internal onlyInitializing {
__BaseSFTDelegate_init(name_, symbol_, decimals_, concrete_, metadata_, owner_);
__ResolverCache_init(resolver_);
}
function __SFTIssuableDelegate_init_unchained() internal onlyInitializing {
}
function createSlotOnlyIssueMarket(address txSender_, bytes calldata inputSlotInfo_) external virtual override nonReentrant returns(uint256 slot_) {
require(_msgSender() == _issueMarket(), "SFTIssuableDelegate: only issue market");
slot_ = ISFTIssuableConcrete(concrete()).createSlotOnlyDelegate(txSender_, inputSlotInfo_);
require(!_slotExists(slot_), "SFTIssuableDelegate: slot already exists");
ERC3525SlotEnumerableUpgradeable._createSlot(slot_);
emit CreateSlot(slot_, txSender_, inputSlotInfo_);
}
function mintOnlyIssueMarket(address txSender_, address currency_, address mintTo_, uint256 slot_, uint256 value_) external payable virtual override nonReentrant returns(uint256 tokenId_) {
require(_msgSender() == _issueMarket(), "SFTIssuableDelegate: only issue market");
tokenId_ = ERC3525Upgradeable._mint(mintTo_, slot_, value_);
ISFTIssuableConcrete(concrete()).mintOnlyDelegate(txSender_, currency_, mintTo_, slot_, tokenId_, value_);
emit MintValue(tokenId_, slot_, value_);
}
function _resolverAddressesRequired() internal view virtual override returns (bytes32[] memory) {
bytes32[] memory existAddresses = super._resolverAddressesRequired();
bytes32[] memory newAddresses = new bytes32[](1);
newAddresses[0] = Constants.CONTRACT_ISSUE_MARKET;
return _combineArrays(existAddresses, newAddresses);
}
function _issueMarket() internal view virtual returns (address) {
return getRequiredAddress(Constants.CONTRACT_ISSUE_MARKET, "SFTIssuableDelegate: issueMarket not set");
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IMultiRechargeableConcrete {
struct SlotRechargeInfo {
uint256 totalValue; // accumulated minted value
uint256 rechargedAmount; // accumulated recharged currency amount
}
struct TokenClaimInfo {
uint256 claimedAmount; // accumulated claimed currency amount
}
function rechargeOnlyDelegate(uint256 slot_, address currency_, uint256 rechargeAmount_) external payable;
function mintOnlyDelegate(uint256 tokenId_, uint256 slot_, uint256 value_) external;
function claimOnlyDelegate(uint256 tokenId_, address currency_, uint256 amount_) external;
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromBalance_, uint256 value_) external;
function totalValue(uint256 slot_) external view returns (uint256);
function rechargedAmount(uint256 slot_) external view returns (uint256);
function claimedAmount(uint256 tokenId_) external view returns(uint256);
function claimableAmount(uint256 tokenId_) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/erc-3525/ERC3525Upgradeable.sol";
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTConcreteUpgradeable.sol";
import "./IMultiRechargeableConcrete.sol";
abstract contract MultiRechargeableConcrete is IMultiRechargeableConcrete, BaseSFTConcreteUpgradeable {
mapping(uint256 => SlotRechargeInfo) private _slotRechargeInfos;
mapping(uint256 => TokenClaimInfo) private _tokenClaimInfos;
function rechargeOnlyDelegate(uint256 slot_, address currency_, uint256 rechargeAmount_) external payable virtual override onlyDelegate {
require(currency_ == _currency(slot_), "MultiRechargeableConcrete: invalid currency");
_slotRechargeInfos[slot_].rechargedAmount += rechargeAmount_;
}
function mintOnlyDelegate(uint256 /** tokenId_ */, uint256 slot_, uint256 value_) external virtual override onlyDelegate {
require(_slotRechargeInfos[slot_].rechargedAmount == 0, "MultiRechargeableConcrete: already recharged");
_slotRechargeInfos[slot_].totalValue += value_;
}
function claimOnlyDelegate(uint256 tokenId_, address currency_, uint256 amount_) external virtual override onlyDelegate {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
require(currency_ == _currency(slot), "MultiRechargeableConcrete: currency not supported");
uint256 claimable = claimableAmount(tokenId_);
require(amount_ <= claimable, "MultiRechargeableConcrete: insufficient amount to claim");
_tokenClaimInfos[tokenId_].claimedAmount += amount_;
}
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromBalance_, uint256 transferValue_) external virtual override onlyDelegate {
uint256 transferClaimedAmount = (transferValue_ * _tokenClaimInfos[fromTokenId_].claimedAmount) / fromBalance_;
_tokenClaimInfos[fromTokenId_].claimedAmount -= transferClaimedAmount;
_tokenClaimInfos[toTokenId_].claimedAmount += transferClaimedAmount;
}
function claimableAmount(uint256 tokenId_) public view virtual override returns (uint256) {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
uint256 balance = ERC3525Upgradeable(delegate()).balanceOf(tokenId_);
SlotRechargeInfo storage slotRechargeInfo = _slotRechargeInfos[slot];
TokenClaimInfo storage tokenClaimInfo = _tokenClaimInfos[tokenId_];
return (balance * slotRechargeInfo.rechargedAmount) / slotRechargeInfo.totalValue - tokenClaimInfo.claimedAmount;
}
function totalValue(uint256 slot_) public view override returns (uint256) {
return _slotRechargeInfos[slot_].totalValue;
}
function rechargedAmount(uint256 slot_) public view override returns (uint256) {
return _slotRechargeInfos[slot_].rechargedAmount;
}
function claimedAmount(uint256 tokenId_) public view override returns(uint256) {
return _tokenClaimInfos[tokenId_].claimedAmount;
}
function _afterRecharge(uint256 slot_, uint256 value_) internal virtual {}
function _afterClaim(uint256 tokenId_, uint256 value_) internal virtual {}
function _currency(uint256 slot_) internal view virtual returns (address);
uint256[48] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IMultiRepayableConcrete {
struct SlotRepayInfo {
uint256 initialValue;
uint256 totalValue;
uint256 repaidCurrencyAmount;
}
struct TokenRepayInfo {
uint256 initialValue;
}
function repayOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function repayWithBalanceOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function mintOnlyDelegate(uint256 tokenId_, uint256 slot_, uint256 mintValue_) external;
function claimOnlyDelegate(uint256 tokenId_, uint256 slot_, address currency_, uint256 claimValue_) external returns (uint256);
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) external;
function slotInitialValue(uint256 slot_) external view returns (uint256);
function slotTotalValue(uint256 slot_) external view returns (uint256);
function repaidCurrencyAmount(uint256 slot_) external view returns (uint256);
function tokenInitialValue(uint256 tokenId_) external view returns (uint256);
function claimableValue(uint256 tokenId_) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IMultiRepayableDelegate {
event Repay(uint256 indexed slot, address indexed payer, uint256 repayCurrencyAmount);
event Claim(address indexed to, uint256 indexed tokenId, uint256 claimValue);
function repay(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function repayWithBalance(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable;
function claimTo(address to_, uint256 tokenId_, address currency_, uint256 claimValue_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "@solvprotocol/erc-3525/ERC3525Upgradeable.sol";
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTConcreteUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IMultiRepayableConcrete.sol";
abstract contract MultiRepayableConcrete is IMultiRepayableConcrete, BaseSFTConcreteUpgradeable {
mapping(uint256 => SlotRepayInfo) internal _slotRepayInfo;
mapping(uint256 => TokenRepayInfo) internal _tokenRepayInfo;
// currency address => the portion of balance that has been allocated to any slots
mapping(address => uint256) public allocatedCurrencyBalance;
uint32 internal constant REPAY_RATE_SCALAR = 1e8;
function repayOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override onlyDelegate {
_beforeRepay(txSender_, slot_, currency_, repayCurrencyAmount_);
_slotRepayInfo[slot_].repaidCurrencyAmount += repayCurrencyAmount_;
allocatedCurrencyBalance[currency_] += repayCurrencyAmount_;
}
function repayWithBalanceOnlyDelegate(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override onlyDelegate {
_beforeRepayWithBalance(txSender_, slot_, currency_, repayCurrencyAmount_);
uint256 balance = ERC20(currency_).balanceOf(delegate());
require(repayCurrencyAmount_ <= balance - allocatedCurrencyBalance[currency_], "MultiRepayableConcrete: insufficient unallocated balance");
_slotRepayInfo[slot_].repaidCurrencyAmount += repayCurrencyAmount_;
allocatedCurrencyBalance[currency_] += repayCurrencyAmount_;
}
function mintOnlyDelegate(uint256 tokenId_, uint256 slot_, uint256 mintValue_) external virtual override onlyDelegate {
_beforeMint(tokenId_, slot_, mintValue_);
_slotRepayInfo[slot_].initialValue += mintValue_;
_slotRepayInfo[slot_].totalValue += mintValue_;
_tokenRepayInfo[tokenId_].initialValue += mintValue_;
}
function claimOnlyDelegate(uint256 tokenId_, uint256 slot_, address currency_, uint256 claimValue_) external virtual override onlyDelegate returns (uint256 claimCurrencyAmount_) {
_beforeClaim(tokenId_, slot_, currency_, claimValue_);
_slotRepayInfo[slot_].totalValue -= claimValue_;
uint8 valueDecimals = ERC3525Upgradeable(delegate()).valueDecimals();
uint8 currencyDecimals = ERC20(_currency(slot_)).decimals();
claimCurrencyAmount_ = claimValue_ * _repayRate(slot_) * (10 ** currencyDecimals) / Constants.FULL_PERCENTAGE / REPAY_RATE_SCALAR / (10 ** valueDecimals);
allocatedCurrencyBalance[currency_] -= claimCurrencyAmount_;
}
function transferOnlyDelegate(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) external virtual override onlyDelegate {
_beforeTransfer(fromTokenId_, toTokenId_, fromTokenBalance_, transferValue_);
uint256 transferInitialValue = 0;
if (fromTokenId_ != toTokenId_ && fromTokenBalance_ > 0) {
transferInitialValue = transferValue_ * _tokenRepayInfo[fromTokenId_].initialValue / fromTokenBalance_;
}
_tokenRepayInfo[fromTokenId_].initialValue -= transferInitialValue;
_tokenRepayInfo[toTokenId_].initialValue += transferInitialValue;
}
function slotInitialValue(uint256 slot_) public view returns (uint256) {
return _slotRepayInfo[slot_].initialValue;
}
function slotTotalValue(uint256 slot_) public view virtual override returns (uint256) {
return _slotRepayInfo[slot_].totalValue;
}
function repaidCurrencyAmount(uint256 slot_) public view virtual override returns (uint256) {
return _slotRepayInfo[slot_].repaidCurrencyAmount;
}
function tokenInitialValue(uint256 tokenId_) public view virtual override returns (uint256) {
return _tokenRepayInfo[tokenId_].initialValue;
}
function claimableValue(uint256 tokenId_) public view virtual override returns (uint256) {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
uint256 balance = ERC3525Upgradeable(delegate()).balanceOf(tokenId_);
uint8 valueDecimals = ERC3525Upgradeable(delegate()).valueDecimals();
uint8 currencyDecimals = ERC20(_currency(slot)).decimals();
uint256 initialValueOfSlot = _slotRepayInfo[slot].initialValue;
uint256 initialValueOfToken = tokenInitialValue(tokenId_);
uint256 slotDueAmount = initialValueOfSlot * _repayRate(slot) * (10 ** currencyDecimals) / Constants.FULL_PERCENTAGE / REPAY_RATE_SCALAR / (10 ** valueDecimals);
uint256 slotRepaidAmount = repaidCurrencyAmount(slot);
uint256 tokenTotalClaimableValue = slotRepaidAmount >= slotDueAmount ? initialValueOfToken : initialValueOfToken * slotRepaidAmount / slotDueAmount;
uint256 tokenClaimedBalance = initialValueOfToken - balance;
return tokenTotalClaimableValue > tokenClaimedBalance ? tokenTotalClaimableValue - tokenClaimedBalance : 0;
}
function _currency(uint256 slot_) internal view virtual returns (address);
function _repayRate(uint256 slot_) internal view virtual returns (uint256);
function _beforeRepay(address /** txSender_ */, uint256 slot_, address currency_, uint256 /** repayCurrencyAmount_ */) internal virtual {
require(currency_ == _currency(slot_), "MultiRepayableConcrete: invalid currency");
}
function _beforeRepayWithBalance(address /** txSender_ */, uint256 slot_, address currency_, uint256 /** repayCurrencyAmount_ */) internal virtual {
require(currency_ == _currency(slot_), "MultiRepayableConcrete: invalid currency");
}
function _beforeMint(uint256 /** tokenId_ */, uint256 slot_, uint256 mintValue_) internal virtual {
// skip repayment check when minting in the process of transferring from id to address
if (mintValue_ > 0) {
require(repaidCurrencyAmount(slot_) == 0, "MultiRepayableConcrete: already repaid");
}
}
function _beforeClaim(uint256 /** tokenId_ */, uint256 slot_, address currency_, uint256 /** claimValue_ */) internal virtual {
require(currency_ == _currency(slot_), "MultiRepayableConcrete: invalid currency");
}
function _beforeTransfer(uint256 fromTokenId_, uint256 toTokenId_, uint256 fromTokenBalance_, uint256 transferValue_) internal virtual {}
uint256[47] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTDelegateUpgradeable.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC20TransferHelper.sol";
import "./IMultiRepayableDelegate.sol";
import "./IMultiRepayableConcrete.sol";
abstract contract MultiRepayableDelegate is IMultiRepayableDelegate, BaseSFTDelegateUpgradeable {
function repay(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override nonReentrant {
IMultiRepayableConcrete(concrete()).repayOnlyDelegate(_msgSender(), slot_, currency_, repayCurrencyAmount_);
ERC20TransferHelper.doTransferIn(currency_, _msgSender(), repayCurrencyAmount_);
emit Repay(slot_, _msgSender(), repayCurrencyAmount_);
}
function repayWithBalance(uint256 slot_, address currency_, uint256 repayCurrencyAmount_) external payable virtual override nonReentrant {
require(allowRepayWithBalance(), "MultiRepayableDelegate: cannot repay with balance");
IMultiRepayableConcrete(concrete()).repayWithBalanceOnlyDelegate(_msgSender(), slot_, currency_, repayCurrencyAmount_);
emit Repay(slot_, _msgSender(), repayCurrencyAmount_);
}
function claimTo(address to_, uint256 tokenId_, address currency_, uint256 claimValue_) external virtual override nonReentrant {
require(claimValue_ > 0, "MultiRepayableDelegate: claim value is zero");
require(_isApprovedOrOwner(_msgSender(), tokenId_), "MultiRepayableDelegate: caller is not owner nor approved");
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
uint256 claimableValue = IMultiRepayableConcrete(concrete()).claimableValue(tokenId_);
require(claimValue_ <= claimableValue, "MultiRepayableDelegate: over claim");
if (claimValue_ == ERC3525Upgradeable.balanceOf(tokenId_)) {
ERC3525Upgradeable._burn(tokenId_);
} else {
ERC3525Upgradeable._burnValue(tokenId_, claimValue_);
}
uint256 claimCurrencyAmount = IMultiRepayableConcrete(concrete()).claimOnlyDelegate(tokenId_, slot, currency_, claimValue_);
ERC20TransferHelper.doTransferOut(currency_, payable(to_), claimCurrencyAmount);
emit Claim(to_, tokenId_, claimValue_);
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override(ERC3525SlotEnumerableUpgradeable) {
super._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
if (from_ == address(0) && fromTokenId_ == 0) {
IMultiRepayableConcrete(concrete()).mintOnlyDelegate(toTokenId_, slot_, value_);
}
if (from_ != address(0) && fromTokenId_ != 0 && to_ != address(0) && toTokenId_ != 0) {
IMultiRepayableConcrete(concrete()).transferOnlyDelegate(fromTokenId_, toTokenId_,
ERC3525Upgradeable.balanceOf(fromTokenId_), value_);
}
}
function allowRepayWithBalance() public view virtual returns (bool) {
return true;
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../issuable/ISFTIssuableConcrete.sol";
interface ISFTValueIssuableConcrete is ISFTIssuableConcrete {
function burnOnlyDelegate(uint256 tokenId, uint256 burnValue) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../issuable/ISFTIssuableDelegate.sol";
interface ISFTValueIssuableDelegate is ISFTIssuableDelegate {
function mintValueOnlyIssueMarket(address txSender, address currency, uint256 tokenId, uint256 mintValue) external payable;
function burnOnlyIssueMarket(uint256 tokenId, uint256 burnValue) external;
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTConcreteUpgradeable.sol";
import "./ISFTValueIssuableDelegate.sol";
import "./ISFTValueIssuableConcrete.sol";
import "../issuable/SFTIssuableConcrete.sol";
abstract contract SFTValueIssuableConcrete is ISFTValueIssuableConcrete, SFTIssuableConcrete {
function __SFTValueIssuableConcrete_init() internal onlyInitializing {
__SFTIssuableConcrete_init();
}
function __SFTValueIssuableConcrete_init_unchained() internal onlyInitializing {
}
function burnOnlyDelegate(uint256 tokenId_, uint256 burnValue_) external virtual override onlyDelegate {
_burn(tokenId_, burnValue_);
}
function _burn(uint256 tokenId_, uint256 burnValue_) internal virtual;
uint256[50] private __gap;
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "@solvprotocol/contracts-v3-address-resolver/contracts/ResolverCache.sol";
import "@solvprotocol/contracts-v3-sft-core/contracts/BaseSFTDelegateUpgradeable.sol";
import "./ISFTValueIssuableDelegate.sol";
import "./ISFTValueIssuableConcrete.sol";
import "../issuable/SFTIssuableDelegate.sol";
error OnlyMarket();
abstract contract SFTValueIssuableDelegate is ISFTValueIssuableDelegate, SFTIssuableDelegate {
event BurnValue(uint256 indexed tokenId, uint256 burnValue);
function __SFTValueIssuableDelegate_init(
address resolver_, string memory name_, string memory symbol_, uint8 decimals_,
address concrete_, address metadata_, address owner_
) internal onlyInitializing {
__SFTIssuableDelegate_init(resolver_, name_, symbol_, decimals_, concrete_, metadata_, owner_);
}
function __SFTValueIssuableDelegate_init_unchained() internal onlyInitializing {
}
function mintValueOnlyIssueMarket(
address txSender_, address currency_, uint256 tokenId_, uint256 mintValue_
) external payable virtual override nonReentrant {
if (_msgSender() != _issueMarket()) {
revert OnlyMarket();
}
address owner = ERC3525Upgradeable.ownerOf(tokenId_);
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
ERC3525Upgradeable._mintValue(tokenId_, mintValue_);
ISFTIssuableConcrete(concrete()).mintOnlyDelegate(txSender_, currency_, owner, slot, tokenId_, mintValue_);
emit MintValue(tokenId_, slot, mintValue_);
}
function burnOnlyIssueMarket(uint256 tokenId_, uint256 burnValue_) external virtual override nonReentrant {
if (_msgSender() != _issueMarket()) {
revert OnlyMarket();
}
uint256 actualBurnValue = burnValue_ == 0 ? ERC3525Upgradeable.balanceOf(tokenId_) : burnValue_;
ISFTValueIssuableConcrete(concrete()).burnOnlyDelegate(tokenId_, actualBurnValue);
if (burnValue_ == 0) {
ERC3525Upgradeable._burn(tokenId_);
} else {
ERC3525Upgradeable._burnValue(tokenId_, burnValue_);
}
emit BurnValue(tokenId_, actualBurnValue);
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/OwnControl.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/SFTConcreteControl.sol";
import "./interface/IBaseSFTConcrete.sol";
abstract contract BaseSFTConcreteUpgradeable is IBaseSFTConcrete, SFTConcreteControl {
modifier onlyDelegateOwner {
require(_msgSender() == OwnControl(delegate()).owner(), "only delegate owner");
_;
}
function __BaseSFTConcrete_init() internal onlyInitializing {
__SFTConcreteControl_init();
}
function isSlotValid(uint256 slot_) external view virtual override returns (bool) {
return _isSlotValid(slot_);
}
function _isSlotValid(uint256 slot_) internal view virtual returns (bool);
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import "@solvprotocol/erc-3525/ERC3525SlotEnumerableUpgradeable.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/ISFTConcreteControl.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/SFTDelegateControl.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/OwnControl.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "./interface/IBaseSFTDelegate.sol";
import "./interface/IBaseSFTConcrete.sol";
abstract contract BaseSFTDelegateUpgradeable is IBaseSFTDelegate, ERC3525SlotEnumerableUpgradeable,
OwnControl, SFTDelegateControl, ReentrancyGuardUpgradeable {
event CreateSlot(uint256 indexed _slot, address indexed _creator, bytes _slotInfo);
event MintValue(uint256 indexed _tokenId, uint256 indexed _slot, uint256 _value);
function __BaseSFTDelegate_init(
string memory name_, string memory symbol_, uint8 decimals_,
address concrete_, address metadata_, address owner_
) internal onlyInitializing {
ERC3525Upgradeable.__ERC3525_init(name_, symbol_, decimals_);
OwnControl.__OwnControl_init(owner_);
ERC3525Upgradeable._setMetadataDescriptor(metadata_);
SFTDelegateControl.__SFTDelegateControl_init(concrete_);
__ReentrancyGuard_init();
//address of concrete must be zero when initializing impletion contract avoid failed after upgrade
if (concrete_ != Constants.ZERO_ADDRESS) {
ISFTConcreteControl(concrete_).setDelegate(address(this));
}
}
function delegateToConcreteView(bytes calldata data) external view override returns (bytes memory) {
(bool success, bytes memory returnData) = concrete().staticcall(data);
assembly {
if eq(success, 0) {
revert(add(returnData, 0x20), returndatasize())
}
}
return returnData;
}
function contractType() external view virtual returns (string memory);
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IBaseSFTConcrete {
function isSlotValid(uint256 slot_) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IBaseSFTDelegate {
function delegateToConcreteView(bytes calldata data) external view returns (bytes memory);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-solidity-utils/contracts/misc/Constants.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC20TransferHelper.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/issuable/SFTIssuableConcrete.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/multi-rechargeable/MultiRechargeableConcrete.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/multi-repayable/MultiRepayableConcrete.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IEarnConcrete.sol";
contract EarnConcrete is IEarnConcrete, SFTIssuableConcrete, MultiRepayableConcrete {
mapping(address => bool) internal _allowCurrencies;
mapping(uint256 => SlotBaseInfo) internal _slotBaseInfos;
mapping(uint256 => SlotExtInfo) internal _slotExtInfos;
function initialize() external initializer {
__SFTIssuableConcrete_init();
}
function setCurrencyOnlyDelegate(address currency_, bool isAllowed_) external override onlyDelegate {
_setCurrency(currency_, isAllowed_);
}
function setInterestRateOnlyDelegate(address txSender_, uint256 slot_, int32 interestRate_) external override onlyDelegate {
SlotExtInfo storage extInfo = _slotExtInfos[slot_];
require(extInfo.interestType == InterestType.FLOATING, "EarnConcrete: not floating interest");
require(txSender_ == extInfo.supervisor, "EarnConcrete: only supervisor");
require(slotTotalValue(slot_) == slotInitialValue(slot_), "EarnConcrete: already claimed");
extInfo.interestRate = interestRate_;
extInfo.isInterestRateSet = true;
}
function claimableValue(uint256 tokenId_) public view virtual override returns (uint256) {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
if (_slotExtInfos[slot].interestType == InterestType.FLOATING && !_slotExtInfos[slot].isInterestRateSet) {
return 0;
}
return super.claimableValue(tokenId_);
}
function getSlot(address issuer_, address currency_, uint64 valueDate_, uint64 maturity_, uint64 createTime_, bool transferable_) public view returns (uint256) {
uint256 chainId;
assembly { chainId := chainid() }
return uint256(keccak256(abi.encodePacked(chainId, delegate(), issuer_, currency_, valueDate_, maturity_, createTime_, transferable_)));
}
function slotBaseInfo(uint256 slot_) external view override returns (SlotBaseInfo memory) {
return _slotBaseInfos[slot_];
}
function slotExtInfo(uint256 slot_) external view override returns (SlotExtInfo memory) {
return _slotExtInfos[slot_];
}
function _isSlotValid(uint256 slot_) internal view virtual override returns (bool) {
return _slotBaseInfos[slot_].isValid;
}
function _createSlot(address txSender_, bytes memory inputSlotInfo_) internal virtual override returns (uint256 slot_) {
InputSlotInfo memory input = abi.decode(inputSlotInfo_, (InputSlotInfo));
_validateSlotInfo(input);
require(_allowCurrencies[input.currency], "EarnConcrete: currency not allowed");
SlotBaseInfo memory baseInfo = SlotBaseInfo({
issuer: txSender_,
currency: input.currency,
valueDate: input.valueDate,
maturity: input.maturity,
createTime: input.createTime,
transferable: input.transferable,
isValid: true
});
slot_ = getSlot(txSender_, input.currency, input.valueDate, input.maturity, input.createTime, input.transferable);
_slotBaseInfos[slot_] = baseInfo;
_slotExtInfos[slot_] = SlotExtInfo({
supervisor: input.supervisor,
issueQuota: input.issueQuota,
interestType: input.interestType,
interestRate: input.interestRate,
isInterestRateSet: input.interestType == InterestType.FIXED,
externalURI: input.externalURI
});
}
function _mint(address /** txSender_ */, address currency_, address /** mintTo_ */, uint256 slot_, uint256 /** tokenId_ */, uint256 /** amount_ */) internal virtual override {
SlotBaseInfo storage base = _slotBaseInfos[slot_];
require(base.isValid, "EarnConcrete: invalid slot");
require(base.currency == currency_, "EarnConcrete: currency not match");
uint256 issueQuota = _slotExtInfos[slot_].issueQuota;
uint256 issuedAmount = MultiRepayableConcrete.slotInitialValue(slot_);
require(issuedAmount <= issueQuota, "EarnConcrete: issueQuota exceeded");
}
function _validateSlotInfo(InputSlotInfo memory input_) internal view virtual {
require(input_.valueDate > block.timestamp, "EarnConcrete: invalid valueDate");
require(input_.maturity > input_.valueDate, "EarnConcrete: invalid maturity");
}
function isSlotTransferable(uint256 slot_) external view override returns (bool) {
return _slotBaseInfos[slot_].transferable;
}
function isCurrencyAllowed(address currency_) external view returns (bool) {
return _allowCurrencies[currency_];
}
function _setCurrency(address currency_, bool isAllowed_) internal virtual {
_allowCurrencies[currency_] = isAllowed_;
}
function _currency(uint256 slot_) internal view virtual override returns (address) {
return _slotBaseInfos[slot_].currency;
}
function _repayRate(uint256 slot_) internal view virtual override returns (uint256) {
SlotBaseInfo storage baseInfo = _slotBaseInfos[slot_];
SlotExtInfo storage extInfo = _slotExtInfos[slot_];
uint256 scaledFullPercentage = uint256(Constants.FULL_PERCENTAGE) * MultiRepayableConcrete.REPAY_RATE_SCALAR;
uint256 scaledPositiveInterestRate =
(extInfo.interestRate < 0 ? uint256(int256(0 - extInfo.interestRate)) : uint256(int256(extInfo.interestRate))) *
MultiRepayableConcrete.REPAY_RATE_SCALAR * (baseInfo.maturity - baseInfo.valueDate) / Constants.SECONDS_PER_YEAR;
return extInfo.interestRate < 0 ? scaledFullPercentage - scaledPositiveInterestRate : scaledFullPercentage + scaledPositiveInterestRate;
}
function _beforeRepayWithBalance(address txSender_, uint256 slot_, address currency_, uint256 repayCurrencyAmount_) internal virtual override {
super._beforeRepayWithBalance(txSender_, slot_, currency_, repayCurrencyAmount_);
require(txSender_ == _slotBaseInfos[slot_].issuer, "EarnConcrete: only issuer");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-abilities/contracts/issuable/SFTIssuableDelegate.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/multi-repayable/MultiRepayableDelegate.sol";
import "./IEarnConcrete.sol";
contract EarnDelegate is SFTIssuableDelegate, MultiRepayableDelegate {
event SetCurrency(address indexed currency, bool isAllowed);
event SetInterestRate(uint256 indexed slot, int32 interestRate);
bool private __allowRepayWithBalance;
function initialize(
address resolver_, string calldata name_, string calldata symbol_, uint8 decimals_,
address concrete_, address descriptor_, address owner_, bool allowRepayWithBalance_
) external initializer {
__SFTIssuableDelegate_init(resolver_, name_, symbol_, decimals_, concrete_, descriptor_, owner_);
__allowRepayWithBalance = allowRepayWithBalance_;
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override(ERC3525SlotEnumerableUpgradeable, MultiRepayableDelegate) {
MultiRepayableDelegate._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
// untransferable
if (from_ != address(0) && to_ != address(0)) {
require(IEarnConcrete(concrete()).isSlotTransferable(slot_), "untransferable");
}
}
function setCurrencyOnlyOwner(address currency_, bool isAllowed_) external onlyOwner {
IEarnConcrete(concrete()).setCurrencyOnlyDelegate(currency_, isAllowed_);
emit SetCurrency(currency_, isAllowed_);
}
function setInterestRateOnlySupervisor(uint256 slot_, int32 interestRate_) external {
IEarnConcrete(concrete()).setInterestRateOnlyDelegate(_msgSender(), slot_, interestRate_);
emit SetInterestRate(slot_, interestRate_);
}
function allowRepayWithBalance() public view virtual override returns (bool) {
return __allowRepayWithBalance;
}
function contractType() external view virtual override returns (string memory) {
return "Closed-end Fund";
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IEarnConcrete {
enum InterestType {
FIXED,
FLOATING
}
struct InputSlotInfo {
address currency;
address supervisor;
uint256 issueQuota;
InterestType interestType;
int32 interestRate;
uint64 valueDate;
uint64 maturity;
uint64 createTime;
bool transferable;
string externalURI;
}
struct SlotBaseInfo {
address issuer;
address currency;
uint64 valueDate;
uint64 maturity;
uint64 createTime;
bool transferable;
bool isValid;
}
struct SlotExtInfo {
address supervisor;
uint256 issueQuota;
InterestType interestType;
int32 interestRate;
bool isInterestRateSet;
string externalURI;
}
function slotBaseInfo(uint256 slot_) external returns (SlotBaseInfo memory);
function slotExtInfo(uint256 slot_) external returns (SlotExtInfo memory);
function isSlotTransferable(uint256 slot_) external returns (bool);
function isCurrencyAllowed(address currency_) external returns (bool);
function setCurrencyOnlyDelegate(address currency_, bool isAllowed_) external;
function setInterestRateOnlyDelegate(address txSender_, uint256 slot_, int32 interestRate_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOpenFundRedemptionConcrete {
struct RedeemInfo {
bytes32 poolId;
address currency;
uint256 createTime;
uint256 nav;
}
function setRedeemNavOnlyDelegate(uint256 slot_, uint256 nav_) external;
function getRedeemInfo(uint256 slot_) external view returns (RedeemInfo memory);
function getRedeemNav(uint256 slot_) external view returns (uint256);
function getRedemptionFeeRate(uint256 slot_) external view returns (uint256);
function redemptionFeeReceiver() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOpenFundRedemptionDelegate {
function setRedeemNavOnlyMarket(uint256 slot_, uint256 nav_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-abilities/contracts/value-issuable/SFTValueIssuableConcrete.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/fcfs-multi-repayable/FCFSMultiRepayableConcrete.sol";
import "./IOpenFundRedemptionConcrete.sol";
contract OpenFundRedemptionConcrete is IOpenFundRedemptionConcrete, SFTValueIssuableConcrete, FCFSMultiRepayableConcrete {
event SetRedemptionFeeReceiver(address indexed redemptionFeeReceiver);
event SetRedemtpionFeeRate(bytes32 indexed poolId, uint256 redemptionFeeRate);
mapping(uint256 => RedeemInfo) internal _redeemInfos;
address public redemptionFeeReceiver;
// poolId => redemptionFeeRate
mapping(bytes32 => uint256) public redemptionFeeRates; // base: 1e18
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize() external initializer {
__SFTIssuableConcrete_init();
}
function setRedeemNavOnlyDelegate(uint256 slot_, uint256 nav_) external virtual override onlyDelegate {
_redeemInfos[slot_].nav = nav_;
}
function setRedemptionFeeReceiverOnlyAdmin(address redemptionFeeReceiver_) external virtual onlyAdmin {
redemptionFeeReceiver = redemptionFeeReceiver_;
emit SetRedemptionFeeReceiver(redemptionFeeReceiver_);
}
function setRedemptionFeeRateOnlyAdmin(bytes32 poolId_, uint256 redemptionFeeRate_) external virtual onlyAdmin {
redemptionFeeRates[poolId_] = redemptionFeeRate_;
emit SetRedemtpionFeeRate(poolId_, redemptionFeeRate_);
}
function getRedemptionFeeRate(uint256 slot_) external view virtual returns (uint256) {
return redemptionFeeRates[_redeemInfos[slot_].poolId];
}
function getRedeemInfo(uint256 slot_) external view virtual override returns (RedeemInfo memory) {
return _redeemInfos[slot_];
}
function getRedeemNav(uint256 slot_) external view virtual override returns (uint256) {
return _redeemInfos[slot_].nav;
}
function _isSlotValid( uint256 slot_) internal view virtual override returns (bool) {
return _redeemInfos[slot_].createTime != 0;
}
function _createSlot( address /* txSender_ */, bytes memory inputSlotInfo_) internal virtual override returns (uint256 slot_) {
RedeemInfo memory redeemInfo = abi.decode(inputSlotInfo_, (RedeemInfo));
require(redeemInfo.poolId != bytes32(0), "OFRC: invalid poolId");
require(redeemInfo.currency != address(0), "OFRC: invalid currency");
require(redeemInfo.createTime != 0, "OFRC: invalid createTime");
slot_ = _getSlot(redeemInfo.poolId, redeemInfo.currency, redeemInfo.createTime);
// if the slot is already created, do nothing
if (_redeemInfos[slot_].createTime == 0) {
_redeemInfos[slot_] = redeemInfo;
}
}
function _getSlot(bytes32 poolId_, address currency_, uint256 createTime_) internal view virtual returns (uint256) {
uint256 chainId;
assembly { chainId := chainid() }
return uint256(keccak256(abi.encodePacked(chainId, delegate(), poolId_, currency_, createTime_)));
}
function _mint(
address /** txSender_ */, address currency_, address /** mintTo_ */,
uint256 slot_, uint256 /** tokenId_ */, uint256 /** amount_ */
) internal virtual override {
require(_isSlotValid(slot_), "OFRC: invalid slot");
require(_redeemInfos[slot_].currency == currency_, "OFRC: invalid currency");
}
function _burn(uint256 tokenId_, uint256 burnValue_) internal virtual override {
uint256 slot = ERC3525Upgradeable(delegate()).slotOf(tokenId_);
FCFSMultiRepayableConcrete._slotValueInfo[slot].slotTotalValue -= burnValue_;
}
function _currency( uint256 slot_) internal view virtual override returns (address) {
return _redeemInfos[slot_].currency;
}
function _repayRate( uint256 slot_) internal view virtual override returns (uint256) {
return _redeemInfos[slot_].nav;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-abilities/contracts/fcfs-multi-repayable/FCFSMultiRepayableDelegate.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/value-issuable/SFTValueIssuableDelegate.sol";
import "./IOpenFundRedemptionDelegate.sol";
import "./IOpenFundRedemptionConcrete.sol";
contract OpenFundRedemptionDelegate is IOpenFundRedemptionDelegate, SFTValueIssuableDelegate, FCFSMultiRepayableDelegate {
bytes32 internal constant CONTRACT_OPEN_FUND_MARKET = "OpenFundMarket";
bool private __allowRepayWithBalance;
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(
address resolver_, string calldata name_, string calldata symbol_, uint8 decimals_,
address concrete_, address descriptor_, address owner_, bool allowRepayWithBalance_
) external initializer {
__SFTIssuableDelegate_init(resolver_, name_, symbol_, decimals_, concrete_, descriptor_, owner_);
__allowRepayWithBalance = allowRepayWithBalance_;
}
function setRedeemNavOnlyMarket(uint256 slot_, uint256 nav_) external virtual override {
require(_msgSender() == _issueMarket(), "OFRD: only market");
IOpenFundRedemptionConcrete(concrete()).setRedeemNavOnlyDelegate(slot_, nav_);
}
function claimTo(address to_, uint256 tokenId_, address currency_, uint256 claimValue_) external virtual override nonReentrant {
require(claimValue_ > 0, "MultiRepayableDelegate: claim value is zero");
require(_isApprovedOrOwner(_msgSender(), tokenId_), "MultiRepayableDelegate: caller is not owner nor approved");
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
uint256 claimableValue = IFCFSMultiRepayableConcrete(concrete()).claimableValue(tokenId_);
require(claimValue_ <= claimableValue, "MultiRepayableDelegate: over claim");
uint256 claimCurrencyAmount = IFCFSMultiRepayableConcrete(concrete()).claimOnlyDelegate(tokenId_, slot, currency_, claimValue_);
uint256 feeRate = IOpenFundRedemptionConcrete(concrete()).getRedemptionFeeRate(slot);
uint256 feeAmount = claimCurrencyAmount * feeRate / 1e18;
if (claimValue_ == ERC3525Upgradeable.balanceOf(tokenId_)) {
ERC3525Upgradeable._burn(tokenId_);
} else {
ERC3525Upgradeable._burnValue(tokenId_, claimValue_);
}
address feeReceiver = IOpenFundRedemptionConcrete(concrete()).redemptionFeeReceiver();
if (feeReceiver != address(0) && feeAmount > 0) {
ERC20TransferHelper.doTransferOut(currency_, payable(feeReceiver), feeAmount);
}
ERC20TransferHelper.doTransferOut(currency_, payable(to_), claimCurrencyAmount - feeAmount);
emit Claim(to_, tokenId_, claimValue_, currency_, claimCurrencyAmount);
}
function allowRepayWithBalance() public view virtual override returns (bool) {
return __allowRepayWithBalance;
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override(ERC3525SlotEnumerableUpgradeable, FCFSMultiRepayableDelegate) {
FCFSMultiRepayableDelegate._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
}
function _resolverAddressesRequired() internal view virtual override returns (bytes32[] memory addressNames) {
addressNames = new bytes32[](1);
addressNames[0] = CONTRACT_OPEN_FUND_MARKET;
}
function _issueMarket() internal view virtual override returns (address) {
return getRequiredAddress(CONTRACT_OPEN_FUND_MARKET, "OFRD: OpenFundMarket not set");
}
function contractType() external view virtual override returns (string memory) {
return "Open Fund Redemptions";
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-earn/contracts/IEarnConcrete.sol";
interface IOpenFundShareConcrete is IEarnConcrete {
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOpenFundShareDelegate {
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "@solvprotocol/contracts-v3-sft-earn/contracts/EarnConcrete.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/value-issuable/SFTValueIssuableConcrete.sol";
import "./IOpenFundShareConcrete.sol";
error BurnNotAllowed();
contract OpenFundShareConcrete is IOpenFundShareConcrete, EarnConcrete, SFTValueIssuableConcrete {
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function _burn(uint256 tokenId_, uint256 burnValue_) internal virtual override {
uint256 slot = IERC3525Upgradeable(delegate()).slotOf(tokenId_);
SlotExtInfo storage slotExtInfo = _slotExtInfos[slot];
if (slotExtInfo.isInterestRateSet) {
revert BurnNotAllowed();
}
if (burnValue_ > 0) {
uint256 tokenBalance = IERC3525Upgradeable(delegate()).balanceOf(tokenId_);
uint256 burnTokenInitialValue = burnValue_ * _tokenRepayInfo[tokenId_].initialValue / tokenBalance;
_tokenRepayInfo[tokenId_].initialValue -= burnTokenInitialValue;
_slotRepayInfo[slot].initialValue -= burnTokenInitialValue;
_slotRepayInfo[slot].totalValue -= burnValue_;
}
}
function _beforeMint(uint256 /** tokenId_ */, uint256 /** slot_ */, uint256 /** mintValue_ */) internal virtual override {
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@solvprotocol/contracts-v3-sft-earn/contracts/EarnDelegate.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/value-issuable/SFTValueIssuableDelegate.sol";
import "./IOpenFundShareDelegate.sol";
import "./IOpenFundShareConcrete.sol";
contract OpenFundShareDelegate is IOpenFundShareDelegate, EarnDelegate, SFTValueIssuableDelegate {
bytes32 internal constant CONTRACT_OPEN_FUND_MARKET = "OpenFundMarket";
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override(ERC3525SlotEnumerableUpgradeable, EarnDelegate) {
EarnDelegate._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
}
function _resolverAddressesRequired() internal view virtual override returns (bytes32[] memory addressNames) {
addressNames = new bytes32[](1);
addressNames[0] = CONTRACT_OPEN_FUND_MARKET;
}
function _issueMarket() internal view virtual override returns (address) {
return getRequiredAddress(CONTRACT_OPEN_FUND_MARKET, "OFSD: Market not set");
}
function contractType() external view virtual override(BaseSFTDelegateUpgradeable, EarnDelegate) returns (string memory) {
return "Open Fund Shares";
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
abstract contract AdminControl is Initializable, ContextUpgradeable {
event NewAdmin(address oldAdmin, address newAdmin);
event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
address public admin;
address public pendingAdmin;
modifier onlyAdmin() {
require(_msgSender() == admin, "only admin");
_;
}
function __AdminControl_init(address admin_) internal onlyInitializing {
__AdminControl_init_unchained(admin_);
}
function __AdminControl_init_unchained(address admin_) internal onlyInitializing {
admin = admin_;
emit NewAdmin(address(0), admin_);
}
function setPendingAdmin(address newPendingAdmin_) external virtual onlyAdmin {
emit NewPendingAdmin(pendingAdmin, newPendingAdmin_);
pendingAdmin = newPendingAdmin_;
}
function acceptAdmin() external virtual {
require(_msgSender() == pendingAdmin, "only pending admin");
emit NewAdmin(admin, pendingAdmin);
admin = pendingAdmin;
pendingAdmin = address(0);
}
uint256[48] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./AdminControl.sol";
abstract contract GovernorControl is AdminControl {
event NewGovernor(address oldGovernor, address newGovernor);
address public governor;
modifier onlyGovernor() {
require(governor == _msgSender(), "only governor");
_;
}
function __GovernorControl_init(address governor_) internal onlyInitializing {
__GovernorControl_init_unchained(governor_);
__AdminControl_init_unchained(_msgSender());
}
function __GovernorControl_init_unchained(address governor_) internal onlyInitializing {
_setGovernor(governor_);
}
function setGovernorOnlyAdmin(address newGovernor_) public onlyAdmin {
_setGovernor(newGovernor_);
}
function _setGovernor(address newGovernor_) internal {
require(newGovernor_ != address(0), "Governor address connot be 0");
emit NewGovernor(governor, newGovernor_);
governor = newGovernor_;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ISFTConcreteControl {
event NewDelegate(address old_, address new_);
function setDelegate(address newDelegate_) external;
function delegate() external view returns (address);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ISFTDelegateControl {
event NewConcrete(address old_, address new_);
function concrete() external view returns (address);
function setConcreteOnlyAdmin(address newConcrete_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./AdminControl.sol";
abstract contract OwnControl is AdminControl {
event NewOwner(address oldOwner, address newOwner);
address public owner;
modifier onlyOwner() {
require(owner == _msgSender(), "only owner");
_;
}
function __OwnControl_init(address owner_) internal onlyInitializing {
__OwnControl_init_unchained(owner_);
__AdminControl_init_unchained(_msgSender());
}
function __OwnControl_init_unchained(address owner_) internal onlyInitializing {
_setOwner(owner_);
}
function setOwnerOnlyAdmin(address newOwner_) public onlyAdmin {
_setOwner(newOwner_);
}
function _setOwner(address newOwner_) internal {
require(newOwner_ != address(0), "Owner address connot be 0");
emit NewOwner(owner, newOwner_);
owner = newOwner_;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./AdminControl.sol";
import "./ISFTConcreteControl.sol";
abstract contract SFTConcreteControl is ISFTConcreteControl, AdminControl {
address private _delegate;
modifier onlyDelegate() {
require(_msgSender() == _delegate, "only delegate");
_;
}
function __SFTConcreteControl_init() internal onlyInitializing {
__AdminControl_init_unchained(_msgSender());
__SFTConcreteControl_init_unchained();
}
function __SFTConcreteControl_init_unchained() internal onlyInitializing {}
function delegate() public view override returns (address) {
return _delegate;
}
function setDelegate(address newDelegate_) external override {
if (_delegate != address(0)) {
require(_msgSender() == admin, "only admin");
}
emit NewDelegate(_delegate, newDelegate_);
_delegate = newDelegate_;
}
uint256[49] private __gap;
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./AdminControl.sol";
import "./ISFTDelegateControl.sol";
abstract contract SFTDelegateControl is ISFTDelegateControl, AdminControl {
address private _concrete;
function __SFTDelegateControl_init(address concrete_) internal onlyInitializing {
__AdminControl_init_unchained(_msgSender());
__SFTDelegateControl_init_unchained(concrete_);
}
function __SFTDelegateControl_init_unchained(address concrete_) internal onlyInitializing {
_concrete = concrete_;
}
function concrete() public view override returns (address) {
return _concrete;
}
function setConcreteOnlyAdmin(address newConcrete_) external override onlyAdmin {
emit NewConcrete(_concrete, newConcrete_);
_concrete = newConcrete_;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../misc/Constants.sol";
interface ERC20Interface {
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
function approve(address spender, uint256 amount) external returns (bool);
}
// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library ERC20TransferHelper {
function doApprove(address underlying, address spender, uint256 amount) internal {
require(underlying.code.length > 0, "invalid underlying");
(bool success, bytes memory data) = underlying.call(
abi.encodeWithSelector(
ERC20Interface.approve.selector,
spender,
amount
)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "SAF");
}
function doTransferIn(address underlying, address from, uint256 amount) internal {
if (underlying == Constants.ETH_ADDRESS) {
// Sanity checks
require(tx.origin == from || msg.sender == from, "sender mismatch");
require(msg.value >= amount, "value mismatch");
} else {
require(underlying.code.length > 0, "invalid underlying");
(bool success, bytes memory data) = underlying.call(
abi.encodeWithSelector(
ERC20Interface.transferFrom.selector,
from,
address(this),
amount
)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "STF");
}
}
function doTransferOut(address underlying, address payable to, uint256 amount) internal {
if (underlying == Constants.ETH_ADDRESS) {
(bool success, ) = to.call{value: amount}(new bytes(0));
require(success, "STE");
} else {
require(underlying.code.length > 0, "invalid underlying");
(bool success, bytes memory data) = underlying.call(
abi.encodeWithSelector(
ERC20Interface.transfer.selector,
to,
amount
)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), "ST");
}
}
function getCashPrior(address underlying_) internal view returns (uint256) {
if (underlying_ == Constants.ETH_ADDRESS) {
uint256 startingBalance = address(this).balance - msg.value;
return startingBalance;
} else {
ERC20Interface token = ERC20Interface(underlying_);
return token.balanceOf(address(this));
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ERC721Interface {
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
}
interface ERC3525Interface {
function transferFrom(
uint256 _fromTokenId,
uint256 _toTokenId,
uint256 _value
) external payable;
function transferFrom(
uint256 _fromTokenId,
address _to,
uint256 _value
) external payable returns (uint256);
}
library ERC3525TransferHelper {
function doTransferIn(
address underlying,
address from,
uint256 tokenId
) internal {
ERC721Interface token = ERC721Interface(underlying);
token.transferFrom(from, address(this), tokenId);
}
function doTransferOut(
address underlying,
address to,
uint256 tokenId
) internal {
ERC721Interface token = ERC721Interface(underlying);
token.transferFrom(address(this), to, tokenId);
}
function doTransferIn(
address underlying,
uint256 fromTokenId,
uint256 value
) internal returns (uint256 newTokenId) {
ERC3525Interface token = ERC3525Interface(underlying);
return token.transferFrom(fromTokenId, address(this), value);
}
function doTransferOut(
address underlying,
uint256 fromTokenId,
address to,
uint256 value
) internal returns (uint256 newTokenId) {
ERC3525Interface token = ERC3525Interface(underlying);
newTokenId = token.transferFrom(fromTokenId, to, value);
}
function doTransfer(
address underlying,
uint256 fromTokenId,
uint256 toTokenId,
uint256 value
) internal {
ERC3525Interface token = ERC3525Interface(underlying);
token.transferFrom(fromTokenId, toTokenId, value);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library Constants {
uint32 internal constant FULL_PERCENTAGE = 10000;
uint32 internal constant SECONDS_PER_YEAR = 360 * 24 * 60 * 60;
address internal constant ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
address internal constant ZERO_ADDRESS = 0x0000000000000000000000000000000000000000;
bytes32 internal constant CONTRACT_ISSUE_MARKET= "IssueMarket";
bytes32 internal constant CONTRACT_ISSUE_MARKET_PRICE_STRATEGY_MANAGER = "IMPriceStrategyManager";
bytes32 internal constant CONTRACT_ISSUE_MARKET_WHITELIST_STRATEGY_MANAGER = "IMWhitelistStrategyManager";
bytes32 internal constant CONTRACT_ISSUE_MARKET_UNDERWRITER_PROFIT_TOKEN = "IMUnderwriterProfitToken";
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import "./ERC3525Upgradeable.sol";
import "./extensions/IERC3525SlotEnumerableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
contract ERC3525SlotEnumerableUpgradeable is Initializable, ContextUpgradeable, ERC3525Upgradeable, IERC3525SlotEnumerableUpgradeable {
function __ERC3525SlotEnumerable_init(
string memory name_,
string memory symbol_,
uint8 decimals_
) internal onlyInitializing {
__ERC3525_init_unchained(name_, symbol_, decimals_);
}
function __ERC3525SlotEnumerable_init_unchained(
string memory,
string memory,
uint8
) internal onlyInitializing {
}
struct SlotData {
uint256 slot;
uint256[] slotTokens;
}
// slot => tokenId => index
mapping(uint256 => mapping(uint256 => uint256)) private _slotTokensIndex;
SlotData[] private _allSlots;
// slot => index
mapping(uint256 => uint256) private _allSlotsIndex;
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165Upgradeable, ERC3525Upgradeable) returns (bool) {
return
interfaceId == type(IERC3525SlotEnumerableUpgradeable).interfaceId ||
super.supportsInterface(interfaceId);
}
function slotCount() public view virtual override returns (uint256) {
return _allSlots.length;
}
function slotByIndex(uint256 index_) public view virtual override returns (uint256) {
require(index_ < ERC3525SlotEnumerableUpgradeable.slotCount(), "ERC3525SlotEnumerable: slot index out of bounds");
return _allSlots[index_].slot;
}
function _slotExists(uint256 slot_) internal view virtual returns (bool) {
return _allSlots.length != 0 && _allSlots[_allSlotsIndex[slot_]].slot == slot_;
}
function tokenSupplyInSlot(uint256 slot_) public view virtual override returns (uint256) {
if (!_slotExists(slot_)) {
return 0;
}
return _allSlots[_allSlotsIndex[slot_]].slotTokens.length;
}
function tokenInSlotByIndex(uint256 slot_, uint256 index_) public view virtual override returns (uint256) {
require(index_ < ERC3525SlotEnumerableUpgradeable.tokenSupplyInSlot(slot_), "ERC3525SlotEnumerable: slot token index out of bounds");
return _allSlots[_allSlotsIndex[slot_]].slotTokens[index_];
}
function _tokenExistsInSlot(uint256 slot_, uint256 tokenId_) private view returns (bool) {
SlotData storage slotData = _allSlots[_allSlotsIndex[slot_]];
return slotData.slotTokens.length > 0 && slotData.slotTokens[_slotTokensIndex[slot_][tokenId_]] == tokenId_;
}
function _createSlot(uint256 slot_) internal virtual {
require(!_slotExists(slot_), "ERC3525SlotEnumerable: slot already exists");
SlotData memory slotData = SlotData({
slot: slot_,
slotTokens: new uint256[](0)
});
_addSlotToAllSlotsEnumeration(slotData);
emit SlotChanged(0, 0, slot_);
}
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override {
super._beforeValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
if (from_ == address(0) && fromTokenId_ == 0 && !_slotExists(slot_)) {
_createSlot(slot_);
}
//Shh - currently unused
to_;
toTokenId_;
value_;
}
function _afterValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual override {
if (from_ == address(0) && fromTokenId_ == 0 && !_tokenExistsInSlot(slot_, toTokenId_)) {
_addTokenToSlotEnumeration(slot_, toTokenId_);
} else if (to_ == address(0) && toTokenId_ == 0 && _tokenExistsInSlot(slot_, fromTokenId_)) {
_removeTokenFromSlotEnumeration(slot_, fromTokenId_);
}
//Shh - currently unused
value_;
super._afterValueTransfer(from_, to_, fromTokenId_, toTokenId_, slot_, value_);
}
function _addSlotToAllSlotsEnumeration(SlotData memory slotData) private {
_allSlotsIndex[slotData.slot] = _allSlots.length;
_allSlots.push(slotData);
}
function _addTokenToSlotEnumeration(uint256 slot_, uint256 tokenId_) private {
SlotData storage slotData = _allSlots[_allSlotsIndex[slot_]];
_slotTokensIndex[slot_][tokenId_] = slotData.slotTokens.length;
slotData.slotTokens.push(tokenId_);
}
function _removeTokenFromSlotEnumeration(uint256 slot_, uint256 tokenId_) private {
SlotData storage slotData = _allSlots[_allSlotsIndex[slot_]];
uint256 lastTokenIndex = slotData.slotTokens.length - 1;
uint256 lastTokenId = slotData.slotTokens[lastTokenIndex];
uint256 tokenIndex = _slotTokensIndex[slot_][tokenId_];
slotData.slotTokens[tokenIndex] = lastTokenId;
_slotTokensIndex[slot_][lastTokenId] = tokenIndex;
delete _slotTokensIndex[slot_][tokenId_];
slotData.slotTokens.pop();
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[47] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/StringsUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/CountersUpgradeable.sol";
import "./IERC721Upgradeable.sol";
import "./IERC3525Upgradeable.sol";
import "./IERC721ReceiverUpgradeable.sol";
import "./IERC3525ReceiverUpgradeable.sol";
import "./extensions/IERC721EnumerableUpgradeable.sol";
import "./extensions/IERC721MetadataUpgradeable.sol";
import "./extensions/IERC3525MetadataUpgradeable.sol";
import "./periphery/interface/IERC3525MetadataDescriptorUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
contract ERC3525Upgradeable is Initializable, ContextUpgradeable, IERC3525MetadataUpgradeable, IERC721EnumerableUpgradeable {
using StringsUpgradeable for address;
using StringsUpgradeable for uint256;
using AddressUpgradeable for address;
using CountersUpgradeable for CountersUpgradeable.Counter;
event SetMetadataDescriptor(address indexed metadataDescriptor);
struct TokenData {
uint256 id;
uint256 slot;
uint256 balance;
address owner;
address approved;
address[] valueApprovals;
}
struct AddressData {
uint256[] ownedTokens;
mapping(uint256 => uint256) ownedTokensIndex;
mapping(address => bool) approvals;
}
string private _name;
string private _symbol;
uint8 private _decimals;
CountersUpgradeable.Counter private _tokenIdGenerator;
// id => (approval => allowance)
// @dev _approvedValues cannot be defined within TokenData, cause struct containing mappings cannot be constructed.
mapping(uint256 => mapping(address => uint256)) private _approvedValues;
TokenData[] private _allTokens;
// key: id
mapping(uint256 => uint256) private _allTokensIndex;
mapping(address => AddressData) private _addressData;
IERC3525MetadataDescriptorUpgradeable public metadataDescriptor;
function __ERC3525_init(string memory name_, string memory symbol_, uint8 decimals_) internal onlyInitializing {
__ERC3525_init_unchained(name_, symbol_, decimals_);
}
function __ERC3525_init_unchained(string memory name_, string memory symbol_, uint8 decimals_) internal onlyInitializing {
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
}
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return
interfaceId == type(IERC165Upgradeable).interfaceId ||
interfaceId == type(IERC3525Upgradeable).interfaceId ||
interfaceId == type(IERC721Upgradeable).interfaceId ||
interfaceId == type(IERC3525MetadataUpgradeable).interfaceId ||
interfaceId == type(IERC721EnumerableUpgradeable).interfaceId ||
interfaceId == type(IERC721MetadataUpgradeable).interfaceId;
}
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals the token uses for value.
*/
function valueDecimals() public view virtual override returns (uint8) {
return _decimals;
}
function balanceOf(uint256 tokenId_) public view virtual override returns (uint256) {
_requireMinted(tokenId_);
return _allTokens[_allTokensIndex[tokenId_]].balance;
}
function ownerOf(uint256 tokenId_) public view virtual override returns (address owner_) {
_requireMinted(tokenId_);
owner_ = _allTokens[_allTokensIndex[tokenId_]].owner;
require(owner_ != address(0), "ERC3525: invalid token ID");
}
function slotOf(uint256 tokenId_) public view virtual override returns (uint256) {
_requireMinted(tokenId_);
return _allTokens[_allTokensIndex[tokenId_]].slot;
}
function _baseURI() internal view virtual returns (string memory) {
return "";
}
function contractURI() public view virtual override returns (string memory) {
string memory baseURI = _baseURI();
return
address(metadataDescriptor) != address(0) ?
metadataDescriptor.constructContractURI() :
bytes(baseURI).length > 0 ?
string(abi.encodePacked(baseURI, "contract/", StringsUpgradeable.toHexString(address(this)))) :
"";
}
function slotURI(uint256 slot_) public view virtual override returns (string memory) {
string memory baseURI = _baseURI();
return
address(metadataDescriptor) != address(0) ?
metadataDescriptor.constructSlotURI(slot_) :
bytes(baseURI).length > 0 ?
string(abi.encodePacked(baseURI, "slot/", slot_.toString())) :
"";
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId_) public view virtual override returns (string memory) {
_requireMinted(tokenId_);
string memory baseURI = _baseURI();
return
address(metadataDescriptor) != address(0) ?
metadataDescriptor.constructTokenURI(tokenId_) :
bytes(baseURI).length > 0 ?
string(abi.encodePacked(baseURI, tokenId_.toString())) :
"";
}
function approve(uint256 tokenId_, address to_, uint256 value_) public payable virtual override {
address owner = ERC3525Upgradeable.ownerOf(tokenId_);
require(to_ != owner, "ERC3525: approval to current owner");
require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: approve caller is not owner nor approved");
_approveValue(tokenId_, to_, value_);
}
function allowance(uint256 tokenId_, address operator_) public view virtual override returns (uint256) {
_requireMinted(tokenId_);
return _approvedValues[tokenId_][operator_];
}
function transferFrom(
uint256 fromTokenId_,
address to_,
uint256 value_
) public payable virtual override returns (uint256 newTokenId) {
_spendAllowance(_msgSender(), fromTokenId_, value_);
newTokenId = _createDerivedTokenId(fromTokenId_);
_mint(to_, newTokenId, ERC3525Upgradeable.slotOf(fromTokenId_), 0);
_transferValue(fromTokenId_, newTokenId, value_);
}
function transferFrom(
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 value_
) public payable virtual override {
_spendAllowance(_msgSender(), fromTokenId_, value_);
_transferValue(fromTokenId_, toTokenId_, value_);
}
function balanceOf(address owner_) public view virtual override returns (uint256 balance) {
require(owner_ != address(0), "ERC3525: balance query for the zero address");
return _addressData[owner_].ownedTokens.length;
}
function transferFrom(
address from_,
address to_,
uint256 tokenId_
) public payable virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: transfer caller is not owner nor approved");
_transferTokenId(from_, to_, tokenId_);
}
function safeTransferFrom(
address from_,
address to_,
uint256 tokenId_,
bytes memory data_
) public payable virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId_), "ERC3525: transfer caller is not owner nor approved");
_safeTransferTokenId(from_, to_, tokenId_, data_);
}
function safeTransferFrom(
address from_,
address to_,
uint256 tokenId_
) public payable virtual override {
safeTransferFrom(from_, to_, tokenId_, "");
}
function approve(address to_, uint256 tokenId_) public payable virtual override {
address owner = ERC3525Upgradeable.ownerOf(tokenId_);
require(to_ != owner, "ERC3525: approval to current owner");
require(
_msgSender() == owner || ERC3525Upgradeable.isApprovedForAll(owner, _msgSender()),
"ERC3525: approve caller is not owner nor approved for all"
);
_approve(to_, tokenId_);
}
function getApproved(uint256 tokenId_) public view virtual override returns (address) {
_requireMinted(tokenId_);
return _allTokens[_allTokensIndex[tokenId_]].approved;
}
function setApprovalForAll(address operator_, bool approved_) public virtual override {
_setApprovalForAll(_msgSender(), operator_, approved_);
}
function isApprovedForAll(address owner_, address operator_) public view virtual override returns (bool) {
return _addressData[owner_].approvals[operator_];
}
function totalSupply() public view virtual override returns (uint256) {
return _allTokens.length;
}
function tokenByIndex(uint256 index_) public view virtual override returns (uint256) {
require(index_ < ERC3525Upgradeable.totalSupply(), "ERC3525: global index out of bounds");
return _allTokens[index_].id;
}
function tokenOfOwnerByIndex(address owner_, uint256 index_) public view virtual override returns (uint256) {
require(index_ < ERC3525Upgradeable.balanceOf(owner_), "ERC3525: owner index out of bounds");
return _addressData[owner_].ownedTokens[index_];
}
function _setApprovalForAll(
address owner_,
address operator_,
bool approved_
) internal virtual {
require(owner_ != operator_, "ERC3525: approve to caller");
_addressData[owner_].approvals[operator_] = approved_;
emit ApprovalForAll(owner_, operator_, approved_);
}
function _isApprovedOrOwner(address operator_, uint256 tokenId_) internal view virtual returns (bool) {
address owner = ERC3525Upgradeable.ownerOf(tokenId_);
return (
operator_ == owner ||
ERC3525Upgradeable.isApprovedForAll(owner, operator_) ||
ERC3525Upgradeable.getApproved(tokenId_) == operator_
);
}
function _spendAllowance(address operator_, uint256 tokenId_, uint256 value_) internal virtual {
uint256 currentAllowance = ERC3525Upgradeable.allowance(tokenId_, operator_);
if (!_isApprovedOrOwner(operator_, tokenId_) && currentAllowance != type(uint256).max) {
require(currentAllowance >= value_, "ERC3525: insufficient allowance");
_approveValue(tokenId_, operator_, currentAllowance - value_);
}
}
function _exists(uint256 tokenId_) internal view virtual returns (bool) {
return _allTokens.length != 0 && _allTokens[_allTokensIndex[tokenId_]].id == tokenId_;
}
function _requireMinted(uint256 tokenId_) internal view virtual {
require(_exists(tokenId_), "ERC3525: invalid token ID");
}
function _mint(address to_, uint256 slot_, uint256 value_) internal virtual returns (uint256 tokenId) {
tokenId = _createOriginalTokenId();
_mint(to_, tokenId, slot_, value_);
}
function _mint(address to_, uint256 tokenId_, uint256 slot_, uint256 value_) internal virtual {
require(to_ != address(0), "ERC3525: mint to the zero address");
require(tokenId_ != 0, "ERC3525: cannot mint zero tokenId");
require(!_exists(tokenId_), "ERC3525: token already minted");
_beforeValueTransfer(address(0), to_, 0, tokenId_, slot_, value_);
__mintToken(to_, tokenId_, slot_);
__mintValue(tokenId_, value_);
_afterValueTransfer(address(0), to_, 0, tokenId_, slot_, value_);
}
function _mintValue(uint256 tokenId_, uint256 value_) internal virtual {
address owner = ERC3525Upgradeable.ownerOf(tokenId_);
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
_beforeValueTransfer(address(0), owner, 0, tokenId_, slot, value_);
__mintValue(tokenId_, value_);
_afterValueTransfer(address(0), owner, 0, tokenId_, slot, value_);
}
function __mintValue(uint256 tokenId_, uint256 value_) private {
_allTokens[_allTokensIndex[tokenId_]].balance += value_;
emit TransferValue(0, tokenId_, value_);
}
function __mintToken(address to_, uint256 tokenId_, uint256 slot_) private {
TokenData memory tokenData = TokenData({
id: tokenId_,
slot: slot_,
balance: 0,
owner: to_,
approved: address(0),
valueApprovals: new address[](0)
});
_addTokenToAllTokensEnumeration(tokenData);
_addTokenToOwnerEnumeration(to_, tokenId_);
emit Transfer(address(0), to_, tokenId_);
emit SlotChanged(tokenId_, 0, slot_);
}
function _burn(uint256 tokenId_) internal virtual {
_requireMinted(tokenId_);
TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
address owner = tokenData.owner;
uint256 slot = tokenData.slot;
uint256 value = tokenData.balance;
_beforeValueTransfer(owner, address(0), tokenId_, 0, slot, value);
_clearApprovedValues(tokenId_);
_removeTokenFromOwnerEnumeration(owner, tokenId_);
_removeTokenFromAllTokensEnumeration(tokenId_);
emit TransferValue(tokenId_, 0, value);
emit SlotChanged(tokenId_, slot, 0);
emit Transfer(owner, address(0), tokenId_);
_afterValueTransfer(owner, address(0), tokenId_, 0, slot, value);
}
function _burnValue(uint256 tokenId_, uint256 burnValue_) internal virtual {
_requireMinted(tokenId_);
TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
address owner = tokenData.owner;
uint256 slot = tokenData.slot;
uint256 value = tokenData.balance;
require(value >= burnValue_, "ERC3525: burn value exceeds balance");
_beforeValueTransfer(owner, address(0), tokenId_, 0, slot, burnValue_);
tokenData.balance -= burnValue_;
emit TransferValue(tokenId_, 0, burnValue_);
_afterValueTransfer(owner, address(0), tokenId_, 0, slot, burnValue_);
}
function _addTokenToOwnerEnumeration(address to_, uint256 tokenId_) private {
_allTokens[_allTokensIndex[tokenId_]].owner = to_;
_addressData[to_].ownedTokensIndex[tokenId_] = _addressData[to_].ownedTokens.length;
_addressData[to_].ownedTokens.push(tokenId_);
}
function _removeTokenFromOwnerEnumeration(address from_, uint256 tokenId_) private {
_allTokens[_allTokensIndex[tokenId_]].owner = address(0);
AddressData storage ownerData = _addressData[from_];
uint256 lastTokenIndex = ownerData.ownedTokens.length - 1;
uint256 lastTokenId = ownerData.ownedTokens[lastTokenIndex];
uint256 tokenIndex = ownerData.ownedTokensIndex[tokenId_];
ownerData.ownedTokens[tokenIndex] = lastTokenId;
ownerData.ownedTokensIndex[lastTokenId] = tokenIndex;
delete ownerData.ownedTokensIndex[tokenId_];
ownerData.ownedTokens.pop();
}
function _addTokenToAllTokensEnumeration(TokenData memory tokenData_) private {
_allTokensIndex[tokenData_.id] = _allTokens.length;
_allTokens.push(tokenData_);
}
function _removeTokenFromAllTokensEnumeration(uint256 tokenId_) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId_];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
TokenData memory lastTokenData = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenData; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenData.id] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId_];
_allTokens.pop();
}
function _approve(address to_, uint256 tokenId_) internal virtual {
_allTokens[_allTokensIndex[tokenId_]].approved = to_;
emit Approval(ERC3525Upgradeable.ownerOf(tokenId_), to_, tokenId_);
}
function _approveValue(
uint256 tokenId_,
address to_,
uint256 value_
) internal virtual {
require(to_ != address(0), "ERC3525: approve value to the zero address");
if (!_existApproveValue(to_, tokenId_)) {
_allTokens[_allTokensIndex[tokenId_]].valueApprovals.push(to_);
}
_approvedValues[tokenId_][to_] = value_;
emit ApprovalValue(tokenId_, to_, value_);
}
function _clearApprovedValues(uint256 tokenId_) internal virtual {
TokenData storage tokenData = _allTokens[_allTokensIndex[tokenId_]];
uint256 length = tokenData.valueApprovals.length;
for (uint256 i = 0; i < length; i++) {
address approval = tokenData.valueApprovals[i];
delete _approvedValues[tokenId_][approval];
}
delete tokenData.valueApprovals;
}
function _existApproveValue(address to_, uint256 tokenId_) internal view virtual returns (bool) {
uint256 length = _allTokens[_allTokensIndex[tokenId_]].valueApprovals.length;
for (uint256 i = 0; i < length; i++) {
if (_allTokens[_allTokensIndex[tokenId_]].valueApprovals[i] == to_) {
return true;
}
}
return false;
}
function _transferValue(
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 value_
) internal virtual {
require(_exists(fromTokenId_), "ERC3525: transfer from invalid token ID");
require(_exists(toTokenId_), "ERC3525: transfer to invalid token ID");
TokenData storage fromTokenData = _allTokens[_allTokensIndex[fromTokenId_]];
TokenData storage toTokenData = _allTokens[_allTokensIndex[toTokenId_]];
require(fromTokenData.balance >= value_, "ERC3525: insufficient balance for transfer");
require(fromTokenData.slot == toTokenData.slot, "ERC3525: transfer to token with different slot");
_beforeValueTransfer(
fromTokenData.owner,
toTokenData.owner,
fromTokenId_,
toTokenId_,
fromTokenData.slot,
value_
);
fromTokenData.balance -= value_;
toTokenData.balance += value_;
emit TransferValue(fromTokenId_, toTokenId_, value_);
_afterValueTransfer(
fromTokenData.owner,
toTokenData.owner,
fromTokenId_,
toTokenId_,
fromTokenData.slot,
value_
);
require(
_checkOnERC3525Received(fromTokenId_, toTokenId_, value_, ""),
"ERC3525: transfer rejected by ERC3525Receiver"
);
}
function _transferTokenId(
address from_,
address to_,
uint256 tokenId_
) internal virtual {
require(ERC3525Upgradeable.ownerOf(tokenId_) == from_, "ERC3525: transfer from invalid owner");
require(to_ != address(0), "ERC3525: transfer to the zero address");
uint256 slot = ERC3525Upgradeable.slotOf(tokenId_);
uint256 value = ERC3525Upgradeable.balanceOf(tokenId_);
_beforeValueTransfer(from_, to_, tokenId_, tokenId_, slot, value);
_approve(address(0), tokenId_);
_clearApprovedValues(tokenId_);
_removeTokenFromOwnerEnumeration(from_, tokenId_);
_addTokenToOwnerEnumeration(to_, tokenId_);
emit Transfer(from_, to_, tokenId_);
_afterValueTransfer(from_, to_, tokenId_, tokenId_, slot, value);
}
function _safeTransferTokenId(
address from_,
address to_,
uint256 tokenId_,
bytes memory data_
) internal virtual {
_transferTokenId(from_, to_, tokenId_);
require(
_checkOnERC721Received(from_, to_, tokenId_, data_),
"ERC3525: transfer to non ERC721Receiver"
);
}
function _checkOnERC3525Received(
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 value_,
bytes memory data_
) internal virtual returns (bool) {
address to = ERC3525Upgradeable.ownerOf(toTokenId_);
if (to.isContract()) {
try IERC165Upgradeable(to).supportsInterface(type(IERC3525ReceiverUpgradeable).interfaceId) returns (bool retval) {
if (retval) {
bytes4 receivedVal = IERC3525ReceiverUpgradeable(to).onERC3525Received(_msgSender(), fromTokenId_, toTokenId_, value_, data_);
return receivedVal == IERC3525ReceiverUpgradeable.onERC3525Received.selector;
} else {
return true;
}
} catch (bytes memory /** reason */) {
return true;
}
} else {
return true;
}
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from_ address representing the previous owner of the given token ID
* @param to_ target address that will receive the tokens
* @param tokenId_ uint256 ID of the token to be transferred
* @param data_ bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from_,
address to_,
uint256 tokenId_,
bytes memory data_
) private returns (bool) {
if (to_.isContract()) {
try
IERC721ReceiverUpgradeable(to_).onERC721Received(_msgSender(), from_, tokenId_, data_) returns (bytes4 retval) {
return retval == IERC721ReceiverUpgradeable.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/* solhint-disable */
function _beforeValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual {}
function _afterValueTransfer(
address from_,
address to_,
uint256 fromTokenId_,
uint256 toTokenId_,
uint256 slot_,
uint256 value_
) internal virtual {}
/* solhint-enable */
function _setMetadataDescriptor(address metadataDescriptor_) internal virtual {
metadataDescriptor = IERC3525MetadataDescriptorUpgradeable(metadataDescriptor_);
emit SetMetadataDescriptor(metadataDescriptor_);
}
function _createOriginalTokenId() internal virtual returns (uint256) {
_tokenIdGenerator.increment();
return _tokenIdGenerator.current();
}
function _createDerivedTokenId(uint256 fromTokenId_) internal virtual returns (uint256) {
fromTokenId_;
return _createOriginalTokenId();
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[41] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "../IERC3525Upgradeable.sol";
import "./IERC721MetadataUpgradeable.sol";
/**
* @title ERC-3525 Semi-Fungible Token Standard, optional extension for metadata
* @dev Interfaces for any contract that wants to support query of the Uniform Resource Identifier
* (URI) for the ERC3525 contract as well as a specified slot.
* Because of the higher reliability of data stored in smart contracts compared to data stored in
* centralized systems, it is recommended that metadata, including `contractURI`, `slotURI` and
* `tokenURI`, be directly returned in JSON format, instead of being returned with a url pointing
* to any resource stored in a centralized system.
* See https://eips.ethereum.org/EIPS/eip-3525
* Note: the ERC-165 identifier for this interface is 0xe1600902.
*/
interface IERC3525MetadataUpgradeable is IERC3525Upgradeable, IERC721MetadataUpgradeable {
/**
* @notice Returns the Uniform Resource Identifier (URI) for the current ERC3525 contract.
* @dev This function SHOULD return the URI for this contract in JSON format, starting with
* header `data:application/json;`.
* See https://eips.ethereum.org/EIPS/eip-3525 for the JSON schema for contract URI.
* @return The JSON formatted URI of the current ERC3525 contract
*/
function contractURI() external view returns (string memory);
/**
* @notice Returns the Uniform Resource Identifier (URI) for the specified slot.
* @dev This function SHOULD return the URI for `_slot` in JSON format, starting with header
* `data:application/json;`.
* See https://eips.ethereum.org/EIPS/eip-3525 for the JSON schema for slot URI.
* @return The JSON formatted URI of `_slot`
*/
function slotURI(uint256 _slot) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "../IERC3525Upgradeable.sol";
import "./IERC721EnumerableUpgradeable.sol";
/**
* @title ERC-3525 Semi-Fungible Token Standard, optional extension for slot enumeration
* @dev Interfaces for any contract that wants to support enumeration of slots as well as tokens
* with the same slot.
* See https://eips.ethereum.org/EIPS/eip-3525
* Note: the ERC-165 identifier for this interface is 0x3b741b9e.
*/
interface IERC3525SlotEnumerableUpgradeable is IERC3525Upgradeable, IERC721EnumerableUpgradeable {
/**
* @notice Get the total amount of slots stored by the contract.
* @return The total amount of slots
*/
function slotCount() external view returns (uint256);
/**
* @notice Get the slot at the specified index of all slots stored by the contract.
* @param _index The index in the slot list
* @return The slot at `index` of all slots.
*/
function slotByIndex(uint256 _index) external view returns (uint256);
/**
* @notice Get the total amount of tokens with the same slot.
* @param _slot The slot to query token supply for
* @return The total amount of tokens with the specified `_slot`
*/
function tokenSupplyInSlot(uint256 _slot) external view returns (uint256);
/**
* @notice Get the token at the specified index of all tokens with the same slot.
* @param _slot The slot to query tokens with
* @param _index The index in the token list of the slot
* @return The token ID at `_index` of all tokens with `_slot`
*/
function tokenInSlotByIndex(uint256 _slot, uint256 _index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "../IERC721Upgradeable.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
* Note: the ERC-165 identifier for this interface is 0x780e9d63.
*/
interface IERC721EnumerableUpgradeable is IERC721Upgradeable {
/**
* @notice Count NFTs tracked by this contract
* @return A count of valid NFTs tracked by this contract, where each one of
* them has an assigned and queryable owner not equal to the zero address
*/
function totalSupply() external view returns (uint256);
/**
* @notice Enumerate valid NFTs
* @dev Throws if `_index` >= `totalSupply()`.
* @param _index A counter less than `totalSupply()`
* @return The token identifier for the `_index`th NFT,
* (sort order not specified)
*/
function tokenByIndex(uint256 _index) external view returns (uint256);
/**
* @notice Enumerate NFTs assigned to an owner
* @dev Throws if `_index` >= `balanceOf(_owner)` or if
* `_owner` is the zero address, representing invalid NFTs.
* @param _owner An address where we are interested in NFTs owned by them
* @param _index A counter less than `balanceOf(_owner)`
* @return The token identifier for the `_index`th NFT assigned to `_owner`,
* (sort order not specified)
*/
function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "../IERC721Upgradeable.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
* Note: the ERC-165 identifier for this interface is 0x5b5e139f.
*/
interface IERC721MetadataUpgradeable is IERC721Upgradeable {
/**
* @notice A descriptive name for a collection of NFTs in this contract
*/
function name() external view returns (string memory);
/**
* @notice An abbreviated name for NFTs in this contract
*/
function symbol() external view returns (string memory);
/**
* @notice A distinct Uniform Resource Identifier (URI) for a given asset.
* @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
* 3986. The URI may point to a JSON file that conforms to the "ERC721
* Metadata JSON Schema".
*/
function tokenURI(uint256 _tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "./IERC721.sol";
/**
* @title ERC-3525 Semi-Fungible Token Standard
* @dev See https://eips.ethereum.org/EIPS/eip-3525
* Note: the ERC-165 identifier for this interface is 0xd5358140.
*/
interface IERC3525 is IERC165, IERC721 {
/**
* @dev MUST emit when value of a token is transferred to another token with the same slot,
* including zero value transfers (_value == 0) as well as transfers when tokens are created
* (`_fromTokenId` == 0) or destroyed (`_toTokenId` == 0).
* @param _fromTokenId The token id to transfer value from
* @param _toTokenId The token id to transfer value to
* @param _value The transferred value
*/
event TransferValue(uint256 indexed _fromTokenId, uint256 indexed _toTokenId, uint256 _value);
/**
* @dev MUST emits when the approval value of a token is set or changed.
* @param _tokenId The token to approve
* @param _operator The operator to approve for
* @param _value The maximum value that `_operator` is allowed to manage
*/
event ApprovalValue(uint256 indexed _tokenId, address indexed _operator, uint256 _value);
/**
* @dev MUST emit when the slot of a token is set or changed.
* @param _tokenId The token of which slot is set or changed
* @param _oldSlot The previous slot of the token
* @param _newSlot The updated slot of the token
*/
event SlotChanged(uint256 indexed _tokenId, uint256 indexed _oldSlot, uint256 indexed _newSlot);
/**
* @notice Get the number of decimals the token uses for value - e.g. 6, means the user
* representation of the value of a token can be calculated by dividing it by 1,000,000.
* Considering the compatibility with third-party wallets, this function is defined as
* `valueDecimals()` instead of `decimals()` to avoid conflict with ERC20 tokens.
* @return The number of decimals for value
*/
function valueDecimals() external view returns (uint8);
/**
* @notice Get the value of a token.
* @param _tokenId The token for which to query the balance
* @return The value of `_tokenId`
*/
function balanceOf(uint256 _tokenId) external view returns (uint256);
/**
* @notice Get the slot of a token.
* @param _tokenId The identifier for a token
* @return The slot of the token
*/
function slotOf(uint256 _tokenId) external view returns (uint256);
/**
* @notice Allow an operator to manage the value of a token, up to the `_value` amount.
* @dev MUST revert unless caller is the current owner, an authorized operator, or the approved
* address for `_tokenId`.
* MUST emit ApprovalValue event.
* @param _tokenId The token to approve
* @param _operator The operator to be approved
* @param _value The maximum value of `_toTokenId` that `_operator` is allowed to manage
*/
function approve(
uint256 _tokenId,
address _operator,
uint256 _value
) external payable;
/**
* @notice Get the maximum value of a token that an operator is allowed to manage.
* @param _tokenId The token for which to query the allowance
* @param _operator The address of an operator
* @return The current approval value of `_tokenId` that `_operator` is allowed to manage
*/
function allowance(uint256 _tokenId, address _operator) external view returns (uint256);
/**
* @notice Transfer value from a specified token to another specified token with the same slot.
* @dev Caller MUST be the current owner, an authorized operator or an operator who has been
* approved the whole `_fromTokenId` or part of it.
* MUST revert if `_fromTokenId` or `_toTokenId` is zero token id or does not exist.
* MUST revert if slots of `_fromTokenId` and `_toTokenId` do not match.
* MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
* operator.
* MUST emit `TransferValue` event.
* @param _fromTokenId The token to transfer value from
* @param _toTokenId The token to transfer value to
* @param _value The transferred value
*/
function transferFrom(
uint256 _fromTokenId,
uint256 _toTokenId,
uint256 _value
) external payable;
/**
* @notice Transfer value from a specified token to an address. The caller should confirm that
* `_to` is capable of receiving ERC3525 tokens.
* @dev This function MUST create a new ERC3525 token with the same slot for `_to` to receive
* the transferred value.
* MUST revert if `_fromTokenId` is zero token id or does not exist.
* MUST revert if `_to` is zero address.
* MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
* operator.
* MUST emit `Transfer` and `TransferValue` events.
* @param _fromTokenId The token to transfer value from
* @param _to The address to transfer value to
* @param _value The transferred value
* @return ID of the new token created for `_to` which receives the transferred value
*/
function transferFrom(
uint256 _fromTokenId,
address _to,
uint256 _value
) external payable returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
/**
* @title EIP-3525 token receiver interface
* @dev Interface for a smart contract that wants to be informed by EIP-3525 contracts when
* receiving values from ANY addresses or EIP-3525 tokens.
* Note: the EIP-165 identifier for this interface is 0x009ce20b.
*/
interface IERC3525ReceiverUpgradeable {
/**
* @notice Handle the receipt of an EIP-3525 token value.
* @dev An EIP-3525 smart contract MUST check whether this function is implemented by the
* recipient contract, if the recipient contract implements this function, the EIP-3525
* contract MUST call this function after a value transfer (i.e. `transferFrom(uint256,
* uint256,uint256,bytes)`).
* MUST return 0x009ce20b (i.e. `bytes4(keccak256('onERC3525Received(address,uint256,uint256,
* uint256,bytes)'))`) if the transfer is accepted.
* MUST revert or return any value other than 0x009ce20b if the transfer is rejected.
* @param _operator The address which triggered the transfer
* @param _fromTokenId The token id to transfer value from
* @param _toTokenId The token id to transfer value to
* @param _value The transferred value
* @param _data Additional data with no specified format
* @return `bytes4(keccak256('onERC3525Received(address,uint256,uint256,uint256,bytes)'))`
* unless the transfer is rejected.
*/
function onERC3525Received(address _operator, uint256 _fromTokenId, uint256 _toTokenId, uint256 _value, bytes calldata _data) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol";
import "./IERC721Upgradeable.sol";
/**
* @title ERC-3525 Semi-Fungible Token Standard
* @dev See https://eips.ethereum.org/EIPS/eip-3525
* Note: the ERC-165 identifier for this interface is 0xd5358140.
*/
interface IERC3525Upgradeable is IERC165Upgradeable, IERC721Upgradeable {
/**
* @dev MUST emit when value of a token is transferred to another token with the same slot,
* including zero value transfers (_value == 0) as well as transfers when tokens are created
* (`_fromTokenId` == 0) or destroyed (`_toTokenId` == 0).
* @param _fromTokenId The token id to transfer value from
* @param _toTokenId The token id to transfer value to
* @param _value The transferred value
*/
event TransferValue(uint256 indexed _fromTokenId, uint256 indexed _toTokenId, uint256 _value);
/**
* @dev MUST emits when the approval value of a token is set or changed.
* @param _tokenId The token to approve
* @param _operator The operator to approve for
* @param _value The maximum value that `_operator` is allowed to manage
*/
event ApprovalValue(uint256 indexed _tokenId, address indexed _operator, uint256 _value);
/**
* @dev MUST emit when the slot of a token is set or changed.
* @param _tokenId The token of which slot is set or changed
* @param _oldSlot The previous slot of the token
* @param _newSlot The updated slot of the token
*/
event SlotChanged(uint256 indexed _tokenId, uint256 indexed _oldSlot, uint256 indexed _newSlot);
/**
* @notice Get the number of decimals the token uses for value - e.g. 6, means the user
* representation of the value of a token can be calculated by dividing it by 1,000,000.
* Considering the compatibility with third-party wallets, this function is defined as
* `valueDecimals()` instead of `decimals()` to avoid conflict with ERC20 tokens.
* @return The number of decimals for value
*/
function valueDecimals() external view returns (uint8);
/**
* @notice Get the value of a token.
* @param _tokenId The token for which to query the balance
* @return The value of `_tokenId`
*/
function balanceOf(uint256 _tokenId) external view returns (uint256);
/**
* @notice Get the slot of a token.
* @param _tokenId The identifier for a token
* @return The slot of the token
*/
function slotOf(uint256 _tokenId) external view returns (uint256);
/**
* @notice Allow an operator to manage the value of a token, up to the `_value` amount.
* @dev MUST revert unless caller is the current owner, an authorized operator, or the approved
* address for `_tokenId`.
* MUST emit ApprovalValue event.
* @param _tokenId The token to approve
* @param _operator The operator to be approved
* @param _value The maximum value of `_toTokenId` that `_operator` is allowed to manage
*/
function approve(
uint256 _tokenId,
address _operator,
uint256 _value
) external payable;
/**
* @notice Get the maximum value of a token that an operator is allowed to manage.
* @param _tokenId The token for which to query the allowance
* @param _operator The address of an operator
* @return The current approval value of `_tokenId` that `_operator` is allowed to manage
*/
function allowance(uint256 _tokenId, address _operator) external view returns (uint256);
/**
* @notice Transfer value from a specified token to another specified token with the same slot.
* @dev Caller MUST be the current owner, an authorized operator or an operator who has been
* approved the whole `_fromTokenId` or part of it.
* MUST revert if `_fromTokenId` or `_toTokenId` is zero token id or does not exist.
* MUST revert if slots of `_fromTokenId` and `_toTokenId` do not match.
* MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
* operator.
* MUST emit `TransferValue` event.
* @param _fromTokenId The token to transfer value from
* @param _toTokenId The token to transfer value to
* @param _value The transferred value
*/
function transferFrom(
uint256 _fromTokenId,
uint256 _toTokenId,
uint256 _value
) external payable;
/**
* @notice Transfer value from a specified token to an address. The caller should confirm that
* `_to` is capable of receiving ERC3525 tokens.
* @dev This function MUST create a new ERC3525 token with the same slot for `_to` to receive
* the transferred value.
* MUST revert if `_fromTokenId` is zero token id or does not exist.
* MUST revert if `_to` is zero address.
* MUST revert if `_value` exceeds the balance of `_fromTokenId` or its allowance to the
* operator.
* MUST emit `Transfer` and `TransferValue` events.
* @param _fromTokenId The token to transfer value from
* @param _to The address to transfer value to
* @param _value The transferred value
* @return ID of the new token created for `_to` which receives the transferred value
*/
function transferFrom(
uint256 _fromTokenId,
address _to,
uint256 _value
) external payable returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @title ERC-721 Non-Fungible Token Standard
* @dev See https://eips.ethereum.org/EIPS/eip-721
* Note: the ERC-165 identifier for this interface is 0x80ac58cd.
*/
interface IERC721 is IERC165 {
/**
* @dev This emits when ownership of any NFT changes by any mechanism.
* This event emits when NFTs are created (`from` == 0) and destroyed
* (`to` == 0). Exception: during contract creation, any number of NFTs
* may be created and assigned without emitting Transfer. At the time of
* any transfer, the approved address for that NFT (if any) is reset to none.
*/
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
/**
* @dev This emits when the approved address for an NFT is changed or
* reaffirmed. The zero address indicates there is no approved address.
* When a Transfer event emits, this also indicates that the approved
* address for that NFT (if any) is reset to none.
*/
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
/**
* @dev This emits when an operator is enabled or disabled for an owner.
* The operator can manage all NFTs of the owner.
*/
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/**
* @notice Count all NFTs assigned to an owner
* @dev NFTs assigned to the zero address are considered invalid, and this
* function throws for queries about the zero address.
* @param _owner An address for whom to query the balance
* @return The number of NFTs owned by `_owner`, possibly zero
*/
function balanceOf(address _owner) external view returns (uint256);
/**
* @notice Find the owner of an NFT
* @dev NFTs assigned to zero address are considered invalid, and queries
* about them do throw.
* @param _tokenId The identifier for an NFT
* @return The address of the owner of the NFT
*/
function ownerOf(uint256 _tokenId) external view returns (address);
/**
* @notice Transfers the ownership of an NFT from one address to another address
* @dev Throws unless `msg.sender` is the current owner, an authorized
* operator, or the approved address for this NFT. Throws if `_from` is
* not the current owner. Throws if `_to` is the zero address. Throws if
* `_tokenId` is not a valid NFT. When transfer is complete, this function
* checks if `_to` is a smart contract (code size > 0). If so, it calls
* `onERC721Received` on `_to` and throws if the return value is not
* `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
* @param data Additional data with no specified format, sent in call to `_to`
*/
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;
/**
* @notice Transfers the ownership of an NFT from one address to another address
* @dev This works identically to the other function with an extra data parameter,
* except this function just sets data to "".
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
*/
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
/**
* @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
* TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
* THEY MAY BE PERMANENTLY LOST
* @dev Throws unless `msg.sender` is the current owner, an authorized
* operator, or the approved address for this NFT. Throws if `_from` is
* not the current owner. Throws if `_to` is the zero address. Throws if
* `_tokenId` is not a valid NFT.
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
*/
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
/**
* @notice Change or reaffirm the approved address for an NFT
* @dev The zero address indicates there is no approved address.
* Throws unless `msg.sender` is the current NFT owner, or an authorized
* operator of the current owner.
* @param _approved The new approved NFT controller
* @param _tokenId The NFT to approve
*/
function approve(address _approved, uint256 _tokenId) external payable;
/**
* @notice Enable or disable approval for a third party ("operator") to manage
* all of `msg.sender`'s assets
* @dev Emits the ApprovalForAll event. The contract MUST allow
* multiple operators per owner.
* @param _operator Address to add to the set of authorized operators
* @param _approved True if the operator is approved, false to revoke approval
*/
function setApprovalForAll(address _operator, bool _approved) external;
/**
* @notice Get the approved address for a single NFT
* @dev Throws if `_tokenId` is not a valid NFT.
* @param _tokenId The NFT to find the approved address for
* @return The approved address for this NFT, or the zero address if there is none
*/
function getApproved(uint256 _tokenId) external view returns (address);
/**
* @notice Query if an address is an authorized operator for another address
* @param _owner The address that owns the NFTs
* @param _operator The address that acts on behalf of the owner
* @return True if `_operator` is an approved operator for `_owner`, false otherwise
*/
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers from ERC721 asset contracts.
* Note: the ERC-165 identifier for this interface is 0x150b7a02.
*/
interface IERC721ReceiverUpgradeable {
/**
* @notice Handle the receipt of an NFT
* @dev The ERC721 smart contract calls this function on the recipient
* after a `transfer`. This function MAY throw to revert and reject the
* transfer. Return of other than the magic value MUST result in the
* transaction being reverted.
* Note: the contract address is always the message sender.
* @param _operator The address which called `safeTransferFrom` function
* @param _from The address which previously owned the token
* @param _tokenId The NFT identifier which is being transferred
* @param _data Additional data with no specified format
* @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
* unless throwing
*/
function onERC721Received(
address _operator,
address _from,
uint256 _tokenId,
bytes calldata _data
) external returns(bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;
import "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol";
/**
* @title ERC-721 Non-Fungible Token Standard
* @dev See https://eips.ethereum.org/EIPS/eip-721
* Note: the ERC-165 identifier for this interface is 0x80ac58cd.
*/
interface IERC721Upgradeable is IERC165Upgradeable {
/**
* @dev This emits when ownership of any NFT changes by any mechanism.
* This event emits when NFTs are created (`from` == 0) and destroyed
* (`to` == 0). Exception: during contract creation, any number of NFTs
* may be created and assigned without emitting Transfer. At the time of
* any transfer, the approved address for that NFT (if any) is reset to none.
*/
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
/**
* @dev This emits when the approved address for an NFT is changed or
* reaffirmed. The zero address indicates there is no approved address.
* When a Transfer event emits, this also indicates that the approved
* address for that NFT (if any) is reset to none.
*/
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
/**
* @dev This emits when an operator is enabled or disabled for an owner.
* The operator can manage all NFTs of the owner.
*/
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/**
* @notice Count all NFTs assigned to an owner
* @dev NFTs assigned to the zero address are considered invalid, and this
* function throws for queries about the zero address.
* @param _owner An address for whom to query the balance
* @return The number of NFTs owned by `_owner`, possibly zero
*/
function balanceOf(address _owner) external view returns (uint256);
/**
* @notice Find the owner of an NFT
* @dev NFTs assigned to zero address are considered invalid, and queries
* about them do throw.
* @param _tokenId The identifier for an NFT
* @return The address of the owner of the NFT
*/
function ownerOf(uint256 _tokenId) external view returns (address);
/**
* @notice Transfers the ownership of an NFT from one address to another address
* @dev Throws unless `msg.sender` is the current owner, an authorized
* operator, or the approved address for this NFT. Throws if `_from` is
* not the current owner. Throws if `_to` is the zero address. Throws if
* `_tokenId` is not a valid NFT. When transfer is complete, this function
* checks if `_to` is a smart contract (code size > 0). If so, it calls
* `onERC721Received` on `_to` and throws if the return value is not
* `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
* @param data Additional data with no specified format, sent in call to `_to`
*/
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;
/**
* @notice Transfers the ownership of an NFT from one address to another address
* @dev This works identically to the other function with an extra data parameter,
* except this function just sets data to "".
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
*/
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
/**
* @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
* TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
* THEY MAY BE PERMANENTLY LOST
* @dev Throws unless `msg.sender` is the current owner, an authorized
* operator, or the approved address for this NFT. Throws if `_from` is
* not the current owner. Throws if `_to` is the zero address. Throws if
* `_tokenId` is not a valid NFT.
* @param _from The current owner of the NFT
* @param _to The new owner
* @param _tokenId The NFT to transfer
*/
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
/**
* @notice Change or reaffirm the approved address for an NFT
* @dev The zero address indicates there is no approved address.
* Throws unless `msg.sender` is the current NFT owner, or an authorized
* operator of the current owner.
* @param _approved The new approved NFT controller
* @param _tokenId The NFT to approve
*/
function approve(address _approved, uint256 _tokenId) external payable;
/**
* @notice Enable or disable approval for a third party ("operator") to manage
* all of `msg.sender`'s assets
* @dev Emits the ApprovalForAll event. The contract MUST allow
* multiple operators per owner.
* @param _operator Address to add to the set of authorized operators
* @param _approved True if the operator is approved, false to revoke approval
*/
function setApprovalForAll(address _operator, bool _approved) external;
/**
* @notice Get the approved address for a single NFT
* @dev Throws if `_tokenId` is not a valid NFT.
* @param _tokenId The NFT to find the approved address for
* @return The approved address for this NFT, or the zero address if there is none
*/
function getApproved(uint256 _tokenId) external view returns (address);
/**
* @notice Query if an address is an authorized operator for another address
* @param _owner The address that owns the NFTs
* @param _operator The address that acts on behalf of the owner
* @return True if `_operator` is an approved operator for `_owner`, false otherwise
*/
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC3525MetadataDescriptorUpgradeable {
function constructContractURI() external view returns (string memory);
function constructSlotURI(uint256 slot) external view returns (string memory);
function constructTokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IOpenFundMarketStorage.sol";
interface IOpenFundMarket is IOpenFundMarketStorage {
event SetCurrency(address indexed currency, bool enabled);
event AddSFT(address indexed sft, address manager);
event RemoveSFT(address indexed sft);
event SetProtocolFeeRate(uint256 oldFeeRate, uint256 newFeeRate);
event SetProtocolFeeCollector(address oldFeeCollector, address newFeeCollector);
event CreatePool(bytes32 indexed poolId, address indexed currency, address indexed sft, PoolInfo poolInfo_);
event RemovePool(bytes32 indexed poolId);
event UpdateFundraisingEndTime(bytes32 indexed poolId, uint64 oldEndTime, uint64 newEndTime);
event Subscribe(bytes32 indexed poolId, address indexed buyer, uint256 tokenId, uint256 value, address currency, uint256 nav, uint256 payment);
event RequestRedeem(bytes32 indexed poolId, address indexed owner, uint256 indexed openFundShareId, uint256 openFundRedemptionId, uint256 redeemValue);
event RevokeRedeem(bytes32 indexed poolId, address indexed owner, uint256 indexed openFundRedemptionId, uint256 openFundShareId);
event CloseRedeemSlot(bytes32 indexed poolId, uint256 previousRedeemSlot, uint256 newRedeemSlot);
event SetSubscribeNav(bytes32 indexed poolId, uint256 indexed time, uint256 nav);
event SetRedeemNav(bytes32 indexed poolId, uint256 indexed redeemSlot, uint256 nav);
event SettleCarry(bytes32 indexed poolId, uint256 indexed redeemSlot, address currency, uint256 currencyBalance, uint256 carryAmount);
event SettleProtocolFee(bytes32 indexed poolId, address currency, uint256 protocolFeeAmount);
event UpdatePoolInfo(bytes32 indexed poolId, uint16 newCarryRate, address newCarryCollector, uint256 newSubscribeMin, uint256 newSubscribeMax, address newSubscribeNavManager, address newRedeemNavManager);
struct InputPoolInfo {
address openFundShare;
address openFundRedemption;
address currency;
uint16 carryRate;
address vault;
uint64 valueDate;
address carryCollector;
address subscribeNavManager;
address redeemNavManager;
address navOracle;
uint64 createTime;
address[] whiteList;
SubscribeLimitInfo subscribeLimitInfo;
}
function createPool(InputPoolInfo calldata inputPoolInfo_) external returns (bytes32 poolId_);
function subscribe(bytes32 poolId_, uint256 currentAmount_, uint256 openFundShareId_, uint64 expireTime_) external returns (uint256 value_);
function requestRedeem(bytes32 poolId_, uint256 openFundShareId_, uint256 openFundRedemptionId_, uint256 value_) external;
function revokeRedeem(bytes32 poolId_, uint256 openFundRedemptionId_) external;
function closeCurrentRedeemSlot(bytes32 poolId_) external;
function setSubscribeNav(bytes32 poolId_, uint256 time_, uint256 nav_) external;
function setRedeemNav(bytes32 poolId_, uint256 redeemSlot_, uint256 nav_, uint256 currencyBalance_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOpenFundMarketStorage {
struct SFTInfo {
address manager;
bool isValid;
}
struct SubscribeLimitInfo {
uint256 hardCap;
uint256 subscribeMin;
uint256 subscribeMax;
uint64 fundraisingStartTime;
uint64 fundraisingEndTime;
}
struct PoolSFTInfo {
address openFundShare;
address openFundRedemption;
uint256 openFundShareSlot;
uint256 latestRedeemSlot;
}
struct PoolFeeInfo {
uint16 carryRate;
address carryCollector;
uint64 latestProtocolFeeSettleTime;
}
struct ManagerInfo {
address poolManager;
address subscribeNavManager;
address redeemNavManager;
}
struct PoolInfo {
PoolSFTInfo poolSFTInfo;
PoolFeeInfo poolFeeInfo;
ManagerInfo managerInfo;
SubscribeLimitInfo subscribeLimitInfo;
address vault;
address currency;
address navOracle;
uint64 valueDate;
bool permissionless;
uint256 fundraisingAmount;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library OFMConstants {
bytes32 internal constant CONTRACT_OFM = "OpenFundMarket";
bytes32 internal constant CONTRACT_OFM_NAV_ORACLE = "OFMNavOracle";
bytes32 internal constant CONTRACT_OFM_WHITELIST_STRATEGY_MANAGER = "OFMWhitelistStrategyManager";
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import "@solvprotocol/contracts-v3-address-resolver/contracts/ResolverCache.sol";
import "@solvprotocol/contracts-v3-sft-abilities/contracts/value-issuable/ISFTValueIssuableDelegate.sol";
import "@solvprotocol/erc-3525/IERC3525.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC20TransferHelper.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC3525TransferHelper.sol";
import "@solvprotocol/contracts-v3-sft-open-fund/contracts/open-fund-shares/OpenFundShareConcrete.sol";
import "@solvprotocol/contracts-v3-sft-open-fund/contracts/open-fund-shares/OpenFundShareDelegate.sol";
import "@solvprotocol/contracts-v3-sft-open-fund/contracts/open-fund-redemptions/IOpenFundRedemptionConcrete.sol";
import "@solvprotocol/contracts-v3-sft-open-fund/contracts/open-fund-redemptions/OpenFundRedemptionConcrete.sol";
import "@solvprotocol/contracts-v3-sft-open-fund/contracts/open-fund-redemptions/OpenFundRedemptionDelegate.sol";
import "@solvprotocol/contracts-v3-sft-earn/contracts/IEarnConcrete.sol";
import "./IOpenFundMarket.sol";
import "./OpenFundMarketStorage.sol";
import "./OFMConstants.sol";
import "./whitelist/IOFMWhitelistStrategyManager.sol";
import "./oracle/INavOracle.sol";
contract OpenFundMarket is IOpenFundMarket, OpenFundMarketStorage, ReentrancyGuardUpgradeable, ResolverCache {
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(address resolver_, address governor_) external initializer {
__GovernorControl_init(governor_);
__ReentrancyGuard_init();
__ResolverCache_init(resolver_);
}
function createPool(InputPoolInfo calldata inputPoolInfo_) external virtual override nonReentrant returns (bytes32 poolId_) {
_validateInputPoolInfo(inputPoolInfo_);
IEarnConcrete.InputSlotInfo memory openFundInputSlotInfo = IEarnConcrete.InputSlotInfo({
currency: inputPoolInfo_.currency,
supervisor: inputPoolInfo_.redeemNavManager,
issueQuota: type(uint256).max,
interestType: IEarnConcrete.InterestType.FLOATING,
interestRate: 0,
valueDate: inputPoolInfo_.valueDate,
maturity: inputPoolInfo_.subscribeLimitInfo.fundraisingEndTime,
createTime: inputPoolInfo_.createTime,
transferable: true,
externalURI: ""
});
uint256 slot = ISFTValueIssuableDelegate(inputPoolInfo_.openFundShare).createSlotOnlyIssueMarket(_msgSender(), abi.encode(openFundInputSlotInfo));
poolId_ = keccak256(abi.encode(inputPoolInfo_.openFundShare, slot));
require(poolInfos[poolId_].poolSFTInfo.openFundShareSlot == 0, "OFM: pool already exists");
PoolInfo memory poolInfo = PoolInfo({
poolSFTInfo: PoolSFTInfo({
openFundShare: inputPoolInfo_.openFundShare,
openFundShareSlot: slot,
openFundRedemption: inputPoolInfo_.openFundRedemption,
latestRedeemSlot: 0
}),
poolFeeInfo: PoolFeeInfo({
carryRate: inputPoolInfo_.carryRate,
carryCollector: inputPoolInfo_.carryCollector,
latestProtocolFeeSettleTime: inputPoolInfo_.valueDate
}),
managerInfo: ManagerInfo ({
poolManager: _msgSender(),
subscribeNavManager: inputPoolInfo_.subscribeNavManager,
redeemNavManager: inputPoolInfo_.redeemNavManager
}),
subscribeLimitInfo: inputPoolInfo_.subscribeLimitInfo,
vault: inputPoolInfo_.vault,
currency: inputPoolInfo_.currency,
navOracle: inputPoolInfo_.navOracle,
valueDate: inputPoolInfo_.valueDate,
permissionless: inputPoolInfo_.whiteList.length == 0,
fundraisingAmount: 0
});
poolInfos[poolId_] = poolInfo;
uint256 initialNav = 10 ** ERC20(inputPoolInfo_.currency).decimals();
INavOracle(inputPoolInfo_.navOracle).setSubscribeNavOnlyMarket(poolId_, block.timestamp, initialNav);
INavOracle(inputPoolInfo_.navOracle).updateAllTimeHighRedeemNavOnlyMarket(poolId_, initialNav);
_whitelistStrategyManager().setWhitelist(poolId_, inputPoolInfo_.whiteList);
emit CreatePool(poolId_, poolInfo.currency, poolInfo.poolSFTInfo.openFundShare, poolInfo);
}
function subscribe(bytes32 poolId_, uint256 currencyAmount_, uint256 openFundShareId_, uint64 expireTime_)
external virtual override nonReentrant returns (uint256 value_)
{
require(expireTime_ > block.timestamp, "OFM: expired");
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(poolInfo.permissionless || _whitelistStrategyManager().isWhitelisted(poolId_, _msgSender()), "OFM: not in whitelist");
require(poolInfo.subscribeLimitInfo.fundraisingStartTime <= block.timestamp, "OFM: fundraising not started");
require(poolInfo.subscribeLimitInfo.fundraisingEndTime >= block.timestamp, "OFM: fundraising ended");
uint256 nav;
if (block.timestamp < poolInfo.valueDate) {
nav = 10 ** ERC20(poolInfo.currency).decimals();
} else {
(nav, ) = INavOracle(poolInfo.navOracle).getSubscribeNav(poolId_, block.timestamp);
}
poolInfo.fundraisingAmount += currencyAmount_;
require(poolInfo.fundraisingAmount <= poolInfo.subscribeLimitInfo.hardCap, "OFM: hard cap reached");
value_ = (currencyAmount_ * ( 10 ** IERC3525(poolInfo.poolSFTInfo.openFundShare).valueDecimals())) / nav;
require(value_ > 0, "OFM: value cannot be 0");
uint256 purchasedAmount = purchasedRecords[poolId_][_msgSender()] + currencyAmount_;
require(purchasedAmount <= poolInfo.subscribeLimitInfo.subscribeMax, "OFM: exceed subscribe max limit");
require(currencyAmount_ >= poolInfo.subscribeLimitInfo.subscribeMin, "OFM: less than subscribe min limit");
purchasedRecords[poolId_][_msgSender()] = purchasedAmount;
uint256 tokenId;
if (openFundShareId_ == 0) {
tokenId = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare)
.mintOnlyIssueMarket(_msgSender(), poolInfo.currency, _msgSender(), poolInfo.poolSFTInfo.openFundShareSlot, value_);
} else {
require(IERC3525(poolInfo.poolSFTInfo.openFundShare).slotOf(openFundShareId_) == poolInfo.poolSFTInfo.openFundShareSlot, "OFM: slot not match");
ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare).mintValueOnlyIssueMarket(
_msgSender(), poolInfo.currency, openFundShareId_, value_
);
tokenId = openFundShareId_;
}
ERC20TransferHelper.doTransferIn(poolInfo.currency, _msgSender(), currencyAmount_);
ERC20TransferHelper.doTransferOut(poolInfo.currency, payable(poolInfo.vault), currencyAmount_);
emit Subscribe(poolId_, _msgSender(), tokenId, value_, poolInfo.currency, nav, currencyAmount_);
}
function requestRedeem(bytes32 poolId_, uint256 openFundShareId_, uint256 openFundRedemptionId_, uint256 redeemValue_) external virtual override nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(block.timestamp > poolInfo.valueDate, "OFM: not yet redeemable");
//only do it once per pool when the first redeem request comes in
if (poolInfo.poolSFTInfo.latestRedeemSlot == 0) {
IOpenFundRedemptionConcrete.RedeemInfo memory redeemInfo = IOpenFundRedemptionConcrete.RedeemInfo({
poolId: poolId_,
currency: poolInfo.currency,
createTime: block.timestamp,
nav: 0
});
poolInfo.poolSFTInfo.latestRedeemSlot = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundRedemption).createSlotOnlyIssueMarket(_msgSender(), abi.encode(redeemInfo));
_poolRedeemTokenId[poolInfo.poolSFTInfo.latestRedeemSlot] = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare)
.mintOnlyIssueMarket(_msgSender(), poolInfo.currency, address(this), poolInfo.poolSFTInfo.openFundShareSlot, 0);
}
require(poolInfo.poolSFTInfo.openFundShareSlot == IERC3525(poolInfo.poolSFTInfo.openFundShare).slotOf(openFundShareId_), "OFM: invalid OpenFundShare slot");
if (redeemValue_ == IERC3525(poolInfo.poolSFTInfo.openFundShare).balanceOf(openFundShareId_)) {
ERC3525TransferHelper.doTransferIn(poolInfo.poolSFTInfo.openFundShare, _msgSender(), openFundShareId_);
IERC3525(poolInfo.poolSFTInfo.openFundShare).transferFrom(openFundShareId_, _poolRedeemTokenId[poolInfo.poolSFTInfo.latestRedeemSlot], redeemValue_);
ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare).burnOnlyIssueMarket(openFundShareId_, 0);
} else {
ERC3525TransferHelper.doTransfer(poolInfo.poolSFTInfo.openFundShare, openFundShareId_, _poolRedeemTokenId[poolInfo.poolSFTInfo.latestRedeemSlot], redeemValue_);
}
if (openFundRedemptionId_ == 0) {
openFundRedemptionId_ = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundRedemption).mintOnlyIssueMarket(_msgSender(), poolInfo.currency, _msgSender(), poolInfo.poolSFTInfo.latestRedeemSlot, redeemValue_);
} else {
require(poolInfo.poolSFTInfo.latestRedeemSlot == IERC3525(poolInfo.poolSFTInfo.openFundRedemption).slotOf(openFundRedemptionId_), "OFM: invalid OpenFundRedemption slot");
ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundRedemption).mintValueOnlyIssueMarket(_msgSender(), poolInfo.currency, openFundRedemptionId_, redeemValue_);
}
emit RequestRedeem(poolId_, _msgSender(), openFundShareId_, openFundRedemptionId_, redeemValue_);
}
function revokeRedeem(bytes32 poolId_, uint256 openFundRedemptionId_) external virtual override nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
uint256 slot = IERC3525(poolInfo.poolSFTInfo.openFundRedemption).slotOf(openFundRedemptionId_);
require(poolRedeemSlotCloseTime[slot] == 0, "OFM: slot already closed");
uint256 value = IERC3525(poolInfo.poolSFTInfo.openFundRedemption).balanceOf(openFundRedemptionId_);
ERC3525TransferHelper.doTransferIn(poolInfo.poolSFTInfo.openFundRedemption, _msgSender(), openFundRedemptionId_);
OpenFundRedemptionDelegate(poolInfo.poolSFTInfo.openFundRedemption).burnOnlyIssueMarket(openFundRedemptionId_, 0);
uint256 shareId = ERC3525TransferHelper.doTransferOut(poolInfo.poolSFTInfo.openFundShare, _poolRedeemTokenId[slot], _msgSender(), value);
emit RevokeRedeem(poolId_, _msgSender(), openFundRedemptionId_, shareId);
}
function closeCurrentRedeemSlot(bytes32 poolId_) external virtual override nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(_msgSender() == poolInfo.managerInfo.poolManager, "OFM: only pool manager");
require(poolInfo.poolSFTInfo.latestRedeemSlot != 0, "OFM: no redeem requests");
uint256 poolPreviousRedeemSlot = previousRedeemSlot[poolId_];
if (poolPreviousRedeemSlot > 0) {
require(block.timestamp - poolRedeemSlotCloseTime[poolPreviousRedeemSlot] >= 24 * 60 * 60, "OFM: redeem period less than 24h");
OpenFundRedemptionConcrete redemptionConcrete = OpenFundRedemptionConcrete(OpenFundRedemptionDelegate(poolInfo.poolSFTInfo.openFundRedemption).concrete());
uint256 previousRedeemNav = redemptionConcrete.getRedeemNav(poolPreviousRedeemSlot);
require(previousRedeemNav > 0, "OFM: previous redeem nav not set");
uint256 previousSlotTotalValue = redemptionConcrete.slotTotalValue(poolPreviousRedeemSlot);
uint256 previousSlotCurrencyBalance = redemptionConcrete.slotCurrencyBalance(poolPreviousRedeemSlot);
uint8 redemptionValueDecimals = OpenFundRedemptionDelegate(poolInfo.poolSFTInfo.openFundRedemption).valueDecimals();
require(previousSlotCurrencyBalance >= previousSlotTotalValue * previousRedeemNav / (10 ** redemptionValueDecimals), "OFM: previous redeem slot not fully repaid");
}
IOpenFundRedemptionConcrete.RedeemInfo memory nextRedeemInfo = IOpenFundRedemptionConcrete.RedeemInfo({
poolId: poolId_,
currency: poolInfo.currency,
createTime: block.timestamp,
nav: 0
});
uint256 closingRedeemSlot = poolInfo.poolSFTInfo.latestRedeemSlot;
poolRedeemSlotCloseTime[closingRedeemSlot] = block.timestamp;
previousRedeemSlot[poolId_] = closingRedeemSlot;
poolInfo.poolSFTInfo.latestRedeemSlot = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundRedemption).createSlotOnlyIssueMarket(_msgSender(), abi.encode(nextRedeemInfo));
_poolRedeemTokenId[poolInfo.poolSFTInfo.latestRedeemSlot] = ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare)
.mintOnlyIssueMarket(_msgSender(), poolInfo.currency, address(this), poolInfo.poolSFTInfo.openFundShareSlot, 0);
emit CloseRedeemSlot(poolId_, closingRedeemSlot, poolInfo.poolSFTInfo.latestRedeemSlot);
}
function setSubscribeNav(bytes32 poolId_, uint256 time_, uint256 nav_) external virtual override {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(_msgSender() == poolInfo.managerInfo.subscribeNavManager, "OFM: only subscribe nav manager");
INavOracle(poolInfo.navOracle).setSubscribeNavOnlyMarket(poolId_, time_, nav_);
emit SetSubscribeNav(poolId_, time_, nav_);
}
function setRedeemNav(bytes32 poolId_, uint256 redeemSlot_, uint256 nav_, uint256 currencyBalance_) external virtual override nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(poolRedeemSlotCloseTime[redeemSlot_] > 0, "OFM: redeem slot not closed");
require(_msgSender() == poolInfo.managerInfo.redeemNavManager, "OFM: only redeem nav manager");
uint256 allTimeHighRedeemNav = INavOracle(poolInfo.navOracle).getAllTimeHighRedeemNav(poolId_);
uint256 carryAmount = nav_ > allTimeHighRedeemNav ?
(nav_ - allTimeHighRedeemNav) * poolInfo.poolFeeInfo.carryRate * currencyBalance_ / nav_ / 10000 : 0;
uint256 protocolFeeAmount = currencyBalance_ * protocolFeeRate *
(block.timestamp - poolInfo.poolFeeInfo.latestProtocolFeeSettleTime) / 10000 / (360 * 24 * 60 * 60);
uint256 settledNav = nav_ * (currencyBalance_ - carryAmount - protocolFeeAmount) / currencyBalance_;
uint256 mintCarryValue = carryAmount * (10 ** IERC3525(poolInfo.poolSFTInfo.openFundShare).valueDecimals()) / settledNav;
if (mintCarryValue > 0) {
ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare).mintOnlyIssueMarket(
_msgSender(), poolInfo.currency, poolInfo.poolFeeInfo.carryCollector, poolInfo.poolSFTInfo.openFundShareSlot, mintCarryValue
);
}
emit SettleCarry(poolId_, redeemSlot_, poolInfo.currency, currencyBalance_, carryAmount);
_mintProtocolFeeShares(poolId_, protocolFeeAmount, settledNav, 0);
ISFTValueIssuableDelegate(poolInfo.poolSFTInfo.openFundShare).burnOnlyIssueMarket(_poolRedeemTokenId[redeemSlot_], 0);
OpenFundRedemptionDelegate(poolInfo.poolSFTInfo.openFundRedemption).setRedeemNavOnlyMarket(redeemSlot_, settledNav);
INavOracle(poolInfo.navOracle).setSubscribeNavOnlyMarket(poolId_, block.timestamp, settledNav);
INavOracle(poolInfo.navOracle).updateAllTimeHighRedeemNavOnlyMarket(poolId_, nav_);
emit SetSubscribeNav(poolId_, block.timestamp, settledNav);
emit SetRedeemNav(poolId_, redeemSlot_, settledNav);
}
function settleProtocolFee(bytes32 poolId_, uint256 feeToTokenId_) external virtual nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
(uint256 nav, ) = INavOracle(poolInfo.navOracle).getSubscribeNav(poolId_, block.timestamp);
uint256 totalShares =
OpenFundShareConcrete(OpenFundShareDelegate(poolInfo.poolSFTInfo.openFundShare).concrete()).
slotTotalValue(poolInfo.poolSFTInfo.openFundShareSlot);
uint256 protocolFeeAmount =
totalShares * nav * protocolFeeRate * (block.timestamp - poolInfo.poolFeeInfo.latestProtocolFeeSettleTime) /
10000 / (360 * 24 * 60 * 60) / (10 ** IERC3525(poolInfo.poolSFTInfo.openFundShare).valueDecimals());
uint256 settledNav = nav - protocolFeeAmount * (10 ** IERC3525(poolInfo.poolSFTInfo.openFundShare).valueDecimals()) / totalShares;
_mintProtocolFeeShares(poolId_, protocolFeeAmount, settledNav, feeToTokenId_);
INavOracle(poolInfo.navOracle).setSubscribeNavOnlyMarket(poolId_, block.timestamp, settledNav);
emit SetSubscribeNav(poolId_, block.timestamp, settledNav);
}
function _mintProtocolFeeShares(bytes32 poolId_, uint256 protocolFeeAmount_, uint256 settledNav_, uint256 feeToTokenId_) internal virtual {
PoolInfo storage poolInfo = poolInfos[poolId_];
OpenFundShareDelegate openFundShare = OpenFundShareDelegate(poolInfo.poolSFTInfo.openFundShare);
uint256 mintFeeValue = protocolFeeAmount_ * (10 ** openFundShare.valueDecimals()) / settledNav_;
if (mintFeeValue > 0) {
if (feeToTokenId_ == 0) {
openFundShare.mintOnlyIssueMarket(
_msgSender(), poolInfo.currency, protocolFeeCollector, poolInfo.poolSFTInfo.openFundShareSlot, mintFeeValue
);
} else {
require(openFundShare.slotOf(feeToTokenId_) == poolInfo.poolSFTInfo.openFundShareSlot, "OFM: slot not match");
require(openFundShare.ownerOf(feeToTokenId_) == protocolFeeCollector, "OFM: owner not match");
openFundShare.mintValueOnlyIssueMarket(
_msgSender(), poolInfo.currency, feeToTokenId_, mintFeeValue
);
}
}
poolInfo.poolFeeInfo.latestProtocolFeeSettleTime = uint64(block.timestamp);
emit SettleProtocolFee(poolId_, poolInfo.currency, protocolFeeAmount_);
}
function removePool(bytes32 poolId_) external virtual nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(_msgSender() == poolInfo.managerInfo.poolManager, "OFM: only pool manager");
require(poolInfo.fundraisingAmount == 0, "OFM: already subscribed");
delete poolInfos[poolId_];
emit RemovePool(poolId_);
}
function updateFundraisingEndTime(bytes32 poolId_, uint64 newEndTime_) external virtual nonReentrant {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(_msgSender() == governor || _msgSender() == poolInfo.managerInfo.redeemNavManager, "OFM: only governor or redeem nav manager");
emit UpdateFundraisingEndTime(poolId_, poolInfo.subscribeLimitInfo.fundraisingEndTime, newEndTime_);
poolInfo.subscribeLimitInfo.fundraisingEndTime = newEndTime_;
}
function updatePoolInfoOnlyGovernor(
bytes32 poolId_, uint16 carryRate_, address carryCollector_,
uint256 hardCap_, uint256 subscribeMin_, uint256 subscribeMax_,
address subscribeNavManager_, address redeemNavManager_
) external virtual onlyGovernor {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(
poolInfo.poolSFTInfo.openFundShareSlot != 0 &&
carryRate_ <= 10000 && carryCollector_ != address(0) &&
subscribeMin_ <= subscribeMax_ &&
subscribeNavManager_ != address(0) && redeemNavManager_ != address(0),
"OFM: invalid input"
);
poolInfo.poolFeeInfo.carryRate = carryRate_;
poolInfo.poolFeeInfo.carryCollector = carryCollector_;
poolInfo.subscribeLimitInfo.subscribeMin = subscribeMin_;
poolInfo.subscribeLimitInfo.subscribeMax = subscribeMax_;
poolInfo.subscribeLimitInfo.hardCap = hardCap_;
poolInfo.managerInfo.subscribeNavManager = subscribeNavManager_;
poolInfo.managerInfo.redeemNavManager = redeemNavManager_;
emit UpdatePoolInfo(poolId_, carryRate_, carryCollector_, subscribeMin_, subscribeMax_, subscribeNavManager_, redeemNavManager_);
}
function _whitelistStrategyManager() internal view returns (IOFMWhitelistStrategyManager) {
return IOFMWhitelistStrategyManager(
getRequiredAddress(
OFMConstants.CONTRACT_OFM_WHITELIST_STRATEGY_MANAGER,
"OFM: WhitelistStrategyManager address not found"
)
);
}
function setWhitelist(bytes32 poolId_, address[] calldata whitelist_) external virtual {
PoolInfo storage poolInfo = poolInfos[poolId_];
require(poolInfo.poolSFTInfo.openFundShareSlot != 0, "OFM: pool does not exist");
require(_msgSender() == poolInfo.managerInfo.poolManager, "OFM: only manager");
poolInfo.permissionless = whitelist_.length == 0;
_whitelistStrategyManager().setWhitelist(poolId_, whitelist_);
}
function setCurrencyOnlyGovernor(address currency_, bool enabled_) external virtual onlyGovernor {
require(currency_ != address(0), "OFM: invalid currency");
currencies[currency_] = enabled_;
emit SetCurrency(currency_, enabled_);
}
function addSFTOnlyGovernor(address sft_, address manager_) external virtual onlyGovernor {
require(sft_ != address(0), "OFM: invalid sft");
sftInfos[sft_] = SFTInfo({
manager: manager_,
isValid: true
});
emit AddSFT(sft_, manager_);
}
function removeSFTOnlyGovernor(address sft_) external virtual onlyGovernor {
delete sftInfos[sft_];
emit RemoveSFT(sft_);
}
function setProtocolFeeOnlyGovernor(uint256 newFeeRate_, address newFeeCollector_) external virtual onlyGovernor {
require(newFeeRate_ <= 10000 && newFeeCollector_ != address(0), "OFM: invalid input");
protocolFeeRate = newFeeRate_;
protocolFeeCollector = newFeeCollector_;
emit SetProtocolFeeRate(protocolFeeRate, newFeeRate_);
emit SetProtocolFeeCollector(protocolFeeCollector, newFeeCollector_);
}
function _resolverAddressesRequired() internal view virtual override returns (bytes32[] memory requiredAddresses) {
requiredAddresses = new bytes32[](2);
requiredAddresses[0] = OFMConstants.CONTRACT_OFM_WHITELIST_STRATEGY_MANAGER;
requiredAddresses[1] = OFMConstants.CONTRACT_OFM_NAV_ORACLE;
}
function _validateInputPoolInfo(InputPoolInfo calldata inputPoolInfo_) internal view virtual {
require(currencies[inputPoolInfo_.currency], "OFM: invalid currency");
SFTInfo storage openFundShareInfo = sftInfos[inputPoolInfo_.openFundShare];
require(openFundShareInfo.isValid, "OFM: invalid share");
require(openFundShareInfo.manager == address(0) || _msgSender() == openFundShareInfo.manager, "OFM: invalid share manager");
SFTInfo storage openFundRedemptionInfo = sftInfos[inputPoolInfo_.openFundRedemption];
require(openFundRedemptionInfo.isValid, "OFM: invalid redemption");
require(openFundRedemptionInfo.manager == address(0) || _msgSender() == openFundRedemptionInfo.manager, "OFM: invalid redemption manager");
require(
IERC3525(inputPoolInfo_.openFundShare).valueDecimals() == IERC3525(inputPoolInfo_.openFundRedemption).valueDecimals(),
"OFM: decimals not match"
);
require(inputPoolInfo_.subscribeLimitInfo.subscribeMin <= inputPoolInfo_.subscribeLimitInfo.subscribeMax, "OFM: invalid min and max");
require(inputPoolInfo_.subscribeLimitInfo.fundraisingStartTime <= inputPoolInfo_.valueDate, "OFM: invalid valueDate");
require(inputPoolInfo_.subscribeLimitInfo.fundraisingStartTime <= inputPoolInfo_.subscribeLimitInfo.fundraisingEndTime, "OFM: invalid startTime and endTime");
require(inputPoolInfo_.subscribeLimitInfo.fundraisingEndTime > block.timestamp, "OFM: invalid endTime");
require(inputPoolInfo_.vault != address(0), "OFM: invalid vault");
require(inputPoolInfo_.carryCollector != address(0), "OFM: invalid carryCollector");
require(inputPoolInfo_.subscribeNavManager != address(0), "OFM: invalid subscribeNavManager");
require(inputPoolInfo_.redeemNavManager != address(0), "OFM: invalid redeemNavManager");
require(inputPoolInfo_.carryRate <= 10000, "OFM: invalid carryRate");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@solvprotocol/contracts-v3-solidity-utils/contracts/access/GovernorControl.sol";
import "./IOpenFundMarketStorage.sol";
contract OpenFundMarketStorage is IOpenFundMarketStorage, GovernorControl {
// keccak256(openFundSFT, openFundSlot)
mapping(bytes32 => PoolInfo) public poolInfos;
// keccak256(openFundSFT, openFundSlot) => buyer => purchased amount
mapping(bytes32 => mapping(address => uint256)) public purchasedRecords;
// redeemSlot => close time
mapping(uint256 => uint256) public poolRedeemSlotCloseTime;
// redeemSlot => openFundTokenId
mapping(uint256 => uint256) internal _poolRedeemTokenId;
mapping(address => bool) public currencies;
mapping(address => SFTInfo) public sftInfos;
uint256 public protocolFeeRate;
address public protocolFeeCollector;
mapping(bytes32 => uint256) public previousRedeemSlot;
uint256[42] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface INavOracle {
event SetSubscribeNav(bytes32 indexed poolId, uint256 indexed time, uint256 nav);
event UpdateAllTimeHighRedeemNav(bytes32 indexed poolId, uint256 oldNav, uint256 newNav);
function setSubscribeNavOnlyMarket(bytes32 poolId_, uint256 time_, uint256 nav_) external;
function updateAllTimeHighRedeemNavOnlyMarket(bytes32 poolId_, uint256 nav_) external;
function getSubscribeNav(bytes32 poolId_, uint256 time_) external view returns (uint256 nav_, uint256 navTime_);
function getAllTimeHighRedeemNav(bytes32 poolId_) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOFMWhitelistStrategyManager {
function setWhitelist(bytes32 poolId_, address[] calldata whitelist_) external;
function isWhitelisted(bytes32 poolId_, address buyer_) external view returns (bool);
function getPoolWhitelistIds(bytes32 poolId_) external view returns (bytes32[] memory);
}