ETH Price: $2,717.91 (-7.93%)

Contract Diff Checker

Contract Name:
PolymerAdapter

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.19 <=0.8.20;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Pausable} from "@openzeppelin/contracts/security/Pausable.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {IController} from "../interfaces/IController.sol";
import {IBaseAdapter} from "./interfaces/IBaseAdapter.sol";

/// @title BaseAdapter
/// @notice Abstract base contract for adapters used to send and receive messages
abstract contract BaseAdapter is IBaseAdapter, Pausable, AccessControl {
    /* ========== EVENTS ========== */

    /// @notice Emitted when the protocol fee is set
    event ProtocolFeeSet(uint48 protocolFee);

    /// @notice Emitted when the minimum gas is set
    event MinGasSet(uint256 minGas);

    event TrustedAdapterSet(address indexed adapter, uint256 chainId);

    /* ========== ERRORS ========== */
    /// @notice Error when the fee transfer fails
    error Adapter_FeeTransferFailed();

    /// @notice Error when the provided value is less than the minimum gas limit
    error Adapter_ValueIsLessThanLimit();

    /// @notice Error when the address is invalid
    error Adapter_InvalidAddress();

    /// @notice Error when the parameters are invalid
    error Adapter_InvalidParams();

    /// @notice Error when the sender is unauthorised to perform an action
    error Adapter_Unauthorised();

    /// @notice Error when the message is invalid
    error Adapter_InvalidMessage();

    /// @notice Error when the Bridge message ID is already processed
    error Adapter_AlreadyProcessed();

    /* ========== STATE VARIABLES ========== */
    /// @notice Stores received transfer IDs to prevent double processing
    mapping(bytes32 => bool) internal _processedTransferIds;

    /// @notice Maps chain ID to the origin forwarder address (trusted adapter on the other network)
    /// @dev Only calls from these addresses are allowed when messages are received
    mapping(uint256 => address) public trustedAdapters;

    bytes32 public constant PAUSE_ROLE = keccak256("PAUSE_ROLE");

    /// @notice Fee paid to protocol in basis points (3 decimal places)
    uint48 public protocolFee;

    /// @notice Decimal value for fee calculations (one percent equals 1000)
    uint48 public constant FEE_DECIMALS = 1e5;

    /// @notice Address where the protocol receives fees
    address public protocolFeeRecipient;

    /// @notice Minimum relayer fee that will be accepted
    uint256 public minGas;

    /// @notice Name of the adapter
    string public adapterName;

    /// @notice Constructor to initialize the BaseAdapter
    /// @param name Name of the adapter
    /// @param minimumGas Minimum gas required to relay a message
    /// @param treasury Address where the protocol fees are sent
    /// @param fee Fee to be charged by the protocol in basis points
    constructor(string memory name, uint256 minimumGas, address treasury, uint48 fee, address owner) {
        _setupRole(DEFAULT_ADMIN_ROLE, owner);
        _setupRole(PAUSE_ROLE, owner);
        minGas = minimumGas;
        adapterName = name;
        protocolFeeRecipient = treasury;
        protocolFee = fee;

        emit ProtocolFeeSet(fee);
        emit MinGasSet(minimumGas);
    }

    /// @notice Checks if the given adapter is a trusted adapter for the specified chain ID
    /// @param chainId The chain ID to check
    /// @param adapter The adapter address to verify
    /// @return True if the adapter is trusted, false otherwise
    function isTrustedAdapter(uint256 chainId, address adapter) external view returns (bool) {
        return trustedAdapters[chainId] == adapter;
    }

    /// @notice Checks if the given chain ID is supported by the adapter
    /// @param chainId The chain ID to check
    /// @return True if the chain ID is supported, false otherwise
    function isChainIdSupported(uint256 chainId) public view returns (bool) {
        return trustedAdapters[chainId] != address(0);
    }

    /// @notice Registers a received message and processes it
    /// @dev Internal function that checks the origin sender, decodes the message, and processes it through the controller
    /// @param originSender The address of the sender on the origin chain
    /// @param transferId The ID of the transfer
    /// @param message The message data
    /// @param originChain The origin chain ID
    function _registerMessage(address originSender, bytes32 transferId, bytes memory message, uint256 originChain) internal {
        // Origin sender must be a trusted adapter
        if (trustedAdapters[originChain] != originSender) revert Adapter_Unauthorised();
        // Decode message and get the controller
        BridgedMessage memory bridgedMsg = abi.decode(message, (BridgedMessage));

        // If transfer id is already processed, revert
        if (_processedTransferIds[transferId]) revert Adapter_AlreadyProcessed();
        _processedTransferIds[transferId] = true;

        IController(bridgedMsg.destController).receiveMessage(bridgedMsg.message, originChain, bridgedMsg.originController);
    }

    /// @notice Deducts the protocol fee from the given amount
    /// @dev Internal function that checks minimum gas, calculates the fee, and transfers it to the protocol fee recipient
    /// @param amount The amount from which the fee will be deducted
    /// @return The amount after deducting the fee (remaining msg.value)
    function _deductFee(uint256 amount) internal returns (uint256) {
        if (msg.value < minGas && minGas != 0) revert Adapter_ValueIsLessThanLimit();
        if (protocolFeeRecipient == address(0)) revert Adapter_FeeTransferFailed();
        uint256 feeAmount = calculateFee(amount);
        if (feeAmount > 0) {
            // Transfer fee to protocol
            (bool success, ) = protocolFeeRecipient.call{value: feeAmount}("");
            if (!success) revert Adapter_FeeTransferFailed();
        }
        return amount - feeAmount;
    }

    function calculateFee(uint256 amount) public view returns (uint256) {
        if (protocolFee == 0) return 0;
        return Math.mulDiv(amount, protocolFee, FEE_DECIMALS);
    }

    /// @notice Sets the trusted adapter for a specific chain ID
    /// @dev Only callable by the owner
    /// @param chainId The chain ID to set the trusted adapter for
    /// @param trustedAdapter The address of the trusted adapter
    function setTrustedAdapter(uint256 chainId, address trustedAdapter) external onlyRole(DEFAULT_ADMIN_ROLE) {
        trustedAdapters[chainId] = trustedAdapter;
        emit TrustedAdapterSet(trustedAdapter, chainId);
    }

    /// @notice Sets the protocol fee and the recipient address
    /// @dev Only callable by the owner
    /// @param fee The new protocol fee in basis points
    /// @param treasury The address where the protocol fees will be sent
    function setProtocolFee(uint48 fee, address treasury) external onlyRole(DEFAULT_ADMIN_ROLE) {
        if (fee > 5e3) revert Adapter_InvalidParams();
        protocolFee = fee;
        protocolFeeRecipient = treasury;
        emit ProtocolFeeSet(fee);
    }

    /// @notice Sets the minimum gas required to relay a message
    /// @dev Only callable by the owner
    /// @param _minGas The new minimum gas value
    function setMinGas(uint256 _minGas) external onlyRole(DEFAULT_ADMIN_ROLE) {
        minGas = _minGas;
        emit MinGasSet(_minGas);
    }

    /// @notice Pauses the contract.
    /// @dev Only a user with a PAUSE_ROLE can call this function.
    function pause() public onlyRole(PAUSE_ROLE) {
        _pause();
    }

    /// @notice Unpauses the contract.
    /// @dev Only a user with a PAUSE_ROLE can call this function.
    function unpause() public onlyRole(PAUSE_ROLE) {
        _unpause();
    }

    ///@dev Fallback function to receive ether from bridge refunds
    receive() external payable {}
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.19 <=0.8.20;

interface IBaseAdapter {
    /// @notice Struct used by the adapter to relay messages
    struct BridgedMessage {
        bytes message;
        address originController;
        address destController;
    }

    /// @param destChainId The destination chain ID.
    /// @param destination The destination address.
    /// @param options Additional options to be used by the adapter.
    /// @param message The message data to be relayed.
    /// @return transferId The transfer ID of the relayed message.
    function relayMessage(
        uint256 destChainId,
        address destination,
        bytes memory options,
        bytes calldata message
    ) external payable returns (bytes32 transferId);

    /// @param chainId The chain ID to check.
    /// @return bool True if the chain ID is supported, false otherwise.
    function isChainIdSupported(uint256 chainId) external view returns (bool);
}

// SPDX-License-Identifier: Apache-2.0
/*
 * Copyright 2024, Polymer Labs
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
pragma solidity ^0.8.0;

/**
 * @title ICrossL2Prover
 * @author Polymer Labs
 * @notice A contract that can prove peptides state. Since peptide is an aggregator of many chains' states, this
 * contract can in turn be used to prove any arbitrary events and/or storage on counterparty chains.
 */
interface ICrossL2ProverV2 {
    /**
     * @notice A a log at a given raw rlp encoded receipt at a given logIndex within the receipt.
     * @notice the receiptRLP should first be validated by calling validateReceipt.
     * @param proof: The proof of a given rlp bytes for the receipt, returned from the receipt MMPT of a block.
     * @return chainId The chainID that the proof proves the log for
     * @return emittingContract The address of the contract that emitted the log on the source chain
     * @return topics The topics of the event. First topic is the event signature that can be calculated by
     * Event.selector. The remaining elements in this array are the indexed parameters of the event.
     * @return unindexedData // The abi encoded non-indexed parameters of the event.
     */
    function validateEvent(
        bytes calldata proof
    ) external view returns (uint32 chainId, address emittingContract, bytes calldata topics, bytes calldata unindexedData);

    /**
     * Return srcChain, Block Number, Receipt Index, and Local Index for a requested proof
     */
    function inspectLogIdentifier(
        bytes calldata proof
    ) external pure returns (uint32 srcChain, uint64 blockNumber, uint16 receiptIndex, uint8 logIndex);

    /**
     * Return polymer state root, height , and signature over height and root which can be verified by
     * crypto.pubkey(keccak(peptideStateRoot, peptideHeight))
     */
    function inspectPolymerState(bytes calldata proof) external pure returns (bytes32 stateRoot, uint64 height, bytes memory signature);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.19;

import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {ICrossL2ProverV2} from "./interfaces/ICrossL2ProverV2.sol";
import {BaseAdapter} from "../BaseAdapter.sol";

/// @title Polymer Adapter
/// @notice Adapter contract for cross-chain communication using the Polymer protocol.
contract PolymerAdapter is BaseAdapter, ReentrancyGuard {
    /// @notice Event emitted when a chain ID has been set
    event ChainIdSet(uint256 chainId, bool enabled);

    /// @notice Event emitted when a message is ready to be relayed.
    event RelayViaPolymer(uint256 indexed destChainId, address indexed destAdapter, bytes32 indexed transferId, bytes message);

    /// @notice Error messages when quoted fee after deductions is too low
    error Adapter_FeeTooLow(uint256 minGas, uint256 amount);

    /// @notice Error when the proof is invalid.
    error Adapter_InvalidProof();

    /// @notice Event hash for the RelayViaPolymer event.
    bytes32 public constant RELAY_EVENT_HASH = keccak256("RelayViaPolymer(uint256,address,bytes32,bytes)");

    /// @notice Nonce used in transferId calculation, increments after each calculation.
    uint256 public nonce;

    /// @notice Address of the Polymer Prover contract on the same chain.
    ICrossL2ProverV2 public immutable PROVER;

    /// @notice Maps accesible Polymer chains IDs.
    mapping(uint256 => bool) public supportedChainIds;

    /// @notice Constructor to initialize the PolymerAdapter.
    /// @param _prover Address of the Polymer prover contract on the same chain.
    /// @param name Name of the adapter.
    /// @param minimumGas Minimum gas required to relay a message. Acts as a fixed protocol fee.
    /// @param treasury Address of the treasury.
    /// @param chainIds Array of chain IDs supported by the adapter.
    /// @param owner Owner of the adapter
    constructor(
        address _prover,
        string memory name,
        uint256 minimumGas,
        address treasury,
        uint256[] memory chainIds,
        address owner
    ) BaseAdapter(name, minimumGas, treasury, 0, owner) {
        if (_prover == address(0)) revert Adapter_InvalidParams();
        PROVER = ICrossL2ProverV2(_prover);
        for (uint256 i = 0; i < chainIds.length; i++) {
            supportedChainIds[chainIds[i]] = true;
            emit ChainIdSet(chainIds[i], true);
        }
    }

    /// @notice Emits an event to be relayed to a destination chain using Polymer.
    /// @dev Overloaded function that accepts a RelayedMessage struct so that the Adapter can include msg.sender.
    /// @dev Refunds back to refundAddress any excess gas fees. Returned value is always 0 since no id is produced, should be ignored.
    /// @param destChainId The destination chain ID.
    /// @param destination The destination address.
    /// @param options Additional params to be used by the adapter, abi encoded refund address.
    /// @param message The message data to be relayed.
    /// @return transferId Transfer ID of the relayed message.
    function relayMessage(
        uint256 destChainId,
        address destination,
        bytes memory options,
        bytes memory message
    ) external payable override whenNotPaused nonReentrant returns (bytes32 transferId) {
        // It's permissionless at this point. Msg.sender is encoded to the forwarded message
        address destAdapter = trustedAdapters[destChainId];
        if (!supportedChainIds[destChainId] || destAdapter == address(0)) revert Adapter_InvalidParams(); // Bridge doesn't support this chain id

        bytes memory relayedMessage = abi.encode(BridgedMessage(message, msg.sender, destination));
        _collectAndRefundFees(abi.decode(options, (address)));

        transferId = calculateTransferId(destChainId);
        // Increment nonce used to create transfer id
        nonce++;

        // emit event
        emit RelayViaPolymer(destChainId, destAdapter, transferId, relayedMessage);
    }

    /// @notice Receives a message.
    /// @param proof A hex encoded proof from Polymer.
    function receiveMessage(bytes calldata proof) external virtual whenNotPaused {
        (uint32 originChainId, address sourceAdapter, bytes memory topics, bytes memory unindexedData) = PROVER.validateEvent(proof);
        // If proof is invalid, PROVER.validateEvent() reverts
        address originAdapter = trustedAdapters[originChainId];

        // Decode and verify indexed topics (dest chain id and dest adapter are the same)
        (bytes32 eventHash, uint256 destChainId, address destAdapter, bytes32 transferId) = abi.decode(topics, (bytes32, uint256, address, bytes32));
        if (((destAdapter != address(this)) || (destChainId != block.chainid)) || (originAdapter == address(0)) || (eventHash != RELAY_EVENT_HASH))
            revert Adapter_InvalidProof();

        _registerMessage(sourceAdapter, transferId, abi.decode(unindexedData, (bytes)), originChainId);
    }

    /**
     * @notice Calculates the transfer ID based on the provided parameters.
     * @param destChainId The destination chain ID.
     * @return The calculated transfer ID.
     */
    function calculateTransferId(uint256 destChainId) public view returns (bytes32) {
        return keccak256(abi.encode(destChainId, block.chainid, nonce));
    }

    /// @dev Internal function to collect fees and refund the difference if necessary
    /// @param refundAddress The user address to receive a refund
    function _collectAndRefundFees(address refundAddress) internal {
        uint256 remainingValue = _deductMinGas(msg.value);
        if (remainingValue != 0) {
            // refund excess
            (bool success, ) = refundAddress.call{value: remainingValue}("");
            if (!success) revert Adapter_FeeTransferFailed();
        }
    }

    /// @notice Deducts the protocol fee from the given amount
    /// @dev Internal function that collects the minimumGas and transfers it to the protocol fee recipient
    /// @param amount The amount from which the fee will be deducted
    /// @return The amount after deducting the fee (remaining value)
    function _deductMinGas(uint256 amount) internal returns (uint256) {
        if (amount < minGas && minGas != 0) revert Adapter_FeeTooLow(minGas, amount);
        if (minGas > 0) {
            if (protocolFeeRecipient == address(0)) revert Adapter_FeeTransferFailed();
            // Transfer fee to protocol
            (bool success, ) = protocolFeeRecipient.call{value: minGas}("");
            if (!success) revert Adapter_FeeTransferFailed();
        }
        return amount - minGas;
    }

    /// @notice Sets domain IDs and corresponding chain IDs.
    /// @dev Only the owner can call this function.
    /// @param chainIds Array of chain IDs.
    /// @param enabled Boolean array to enable or disable the chain IDs.
    function setDomainId(uint256[] memory chainIds, bool enabled) external onlyRole(DEFAULT_ADMIN_ROLE) {
        for (uint256 i = 0; i < chainIds.length; i++) {
            supportedChainIds[chainIds[i]] = enabled;
            emit ChainIdSet(chainIds[i], enabled);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19 <=0.8.20;

interface IController {
    /**
     * @notice Registers a received message.
     * @param message The received message data in bytes.
     * @param originChain The origin chain ID.
     * @param originSender The address of the origin sender. (controller in origin chain)
     */
    function receiveMessage(bytes calldata message, uint256 originChain, address originSender) external;

    /**
     * @notice Returns the controller address for a given chain ID.
     * @param chainId The chain ID.
     * @return The controller address.
     */
    function getControllerForChain(uint256 chainId) external view returns (address);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):