Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.0;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*
* _Available since v4.5._
*/
interface IVotes {
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5805.sol)
pragma solidity ^0.8.0;
import "../governance/utils/IVotes.sol";
import "./IERC6372.sol";
interface IERC5805 is IERC6372, IVotes {}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC6372.sol)
pragma solidity ^0.8.0;
interface IERC6372 {
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
*/
function clock() external view returns (uint48);
/**
* @dev Description of the clock
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
library Constants {
uint48 constant EPOCH = 1 weeks;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IMinter {
function update_period() external returns (uint);
function check() external view returns(bool);
function period() external view returns(uint);
function active_period() external view returns(uint);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IVoter {
function ve() external view returns (address);
function gauges(address _pair) external view returns (address);
function isGauge(address _gauge) external view returns (bool);
function poolForGauge(address _gauge) external view returns (address);
function factory() external view returns (address);
function minter() external view returns(address);
function isWhitelisted(address token) external view returns (bool);
function notifyRewardAmount(uint amount) external;
function distributeAll() external;
function distributeFees(address[] memory _gauges) external;
function internal_bribes(address _gauge) external view returns (address);
function external_bribes(address _gauge) external view returns (address);
function usedWeights(uint id) external view returns(uint);
function lastVoted(uint id) external view returns(uint);
function poolVote(uint id, uint _index) external view returns(address _pair);
function votes(uint id, address _pool) external view returns(uint votes);
function poolVoteLength(uint tokenId) external view returns(uint);
function attachTokenToGauge(uint _tokenId, address account) external;
function detachTokenFromGauge(uint _tokenId, address account) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
import "../interfaces/IMinter.sol";
import "../interfaces/IVoter.sol";
import "./VotingEscrow/interfaces/IVotingEscrowV2.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "../Constants.sol";
import "./IBribe.sol";
contract BribeV2 is IBribe, ReentrancyGuard {
using SafeERC20 for IERC20;
uint256 public WEEK = Constants.EPOCH; // rewards are released over 7 days
uint256 public firstBribeTimestamp;
/* ========== STATE VARIABLES ========== */
struct Reward {
uint256 periodFinish;
uint256 rewardsPerEpoch;
uint256 lastUpdateTime;
}
mapping(address => mapping(uint256 => Reward)) public rewardData; // token -> startTimestamp -> Reward
mapping(address => bool) public isRewardToken;
address[] public rewardTokens;
address public voter;
address public immutable bribeFactory;
address public minter;
address public immutable ve;
address public owner;
string public TYPE;
// owner -> reward token -> lastTime
mapping(uint256 => mapping(address => uint256)) public tokenTimestamp;
//uint256 private _totalSupply;
mapping(uint256 => uint256) private _totalSupply;
mapping(address => mapping(uint256 => uint256)) private _balances; //owner -> timestamp -> amount
/* ========== CONSTRUCTOR ========== */
constructor(address _owner, address _voter, address _bribeFactory, string memory _type) {
require(_bribeFactory != address(0) && _voter != address(0) && _owner != address(0));
voter = _voter;
bribeFactory = _bribeFactory;
firstBribeTimestamp = 0;
ve = IVoter(_voter).ve();
minter = IVoter(_voter).minter();
require(minter != address(0));
owner = _owner;
TYPE = _type;
}
/// @notice get the current epoch
function getEpochStart() public view returns (uint256) {
return IMinter(minter).active_period();
}
/// @notice get next epoch (where bribes are saved)
function getNextEpochStart() public view returns (uint256) {
return getEpochStart() + WEEK;
}
/* ========== VIEWS ========== */
/// @notice get the length of the reward tokens
function rewardsListLength() external view returns (uint256) {
return rewardTokens.length;
}
/// @notice get the last totalSupply (total votes for a pool)
function totalSupply() external view returns (uint256) {
uint256 _currentEpochStart = IMinter(minter).active_period(); // claim until current epoch
return _totalSupply[_currentEpochStart];
}
/// @notice get a totalSupply given a timestamp
function totalSupplyAt(uint256 _timestamp) external view returns (uint256) {
return _totalSupply[_timestamp];
}
/// @notice read the balanceOf the tokenId at a given timestamp
function balanceOfAt(uint256 tokenId, uint256 _timestamp) public view returns (uint256) {
address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
return _balances[_owner][_timestamp];
}
/// @notice get last deposit available given a tokenID
function balanceOf(uint256 tokenId) public view returns (uint256) {
uint256 _timestamp = getNextEpochStart();
address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
return _balances[_owner][_timestamp];
}
/// @notice get the balance of an owner in the current epoch
function balanceOfOwner(address _owner) public view returns (uint256) {
uint256 _timestamp = getNextEpochStart();
return _balances[_owner][_timestamp];
}
/// @notice get the balance of an owner given a timestamp
function balanceOfOwnerAt(address _owner, uint256 _timestamp) public view returns (uint256) {
return _balances[_owner][_timestamp];
}
/// @notice Read earned amount given a tokenID and _rewardToken
function earned(uint256 tokenId, address _rewardToken) public view returns (uint256) {
uint256 k = 0;
uint256 reward = 0;
uint256 _endTimestamp = IMinter(minter).active_period(); // claim until current epoch
uint256 _tokenLastTime = tokenTimestamp[tokenId][_rewardToken];
if (_endTimestamp == _tokenLastTime) {
return 0;
}
// if user first time then set it to first bribe - week to avoid any timestamp problem
if (_tokenLastTime < firstBribeTimestamp) {
(, uint48 ts) = IVotingEscrowV2(ve).getFirstEscrowPoint(tokenId);
uint256 start = (ts / WEEK) * WEEK;
_tokenLastTime = start > firstBribeTimestamp ? start : firstBribeTimestamp - WEEK;
}
for (k; k < 50; k++) {
if (_tokenLastTime >= _endTimestamp) {
// if we pass the current epoch, exit
break;
}
reward += _earnedTokenId(tokenId, _rewardToken, uint48(_tokenLastTime));
_tokenLastTime += WEEK;
}
return reward;
}
/// @notice Read earned amount given address and reward token, returns the rewards and the last user timestamp (used in case user do not claim since 50+epochs)
function earnedWithTimestampTokenId(uint256 _tokenId, address _rewardToken) private view returns (uint256, uint256) {
uint256 k = 0;
uint256 reward = 0;
uint256 _endTimestamp = IMinter(minter).active_period(); // claim until current epoch
uint256 _tokenLastTime = tokenTimestamp[_tokenId][_rewardToken];
// if user first time then set it to first bribe - week to avoid any timestamp problem
if (_tokenLastTime < firstBribeTimestamp) {
(, uint48 ts) = IVotingEscrowV2(ve).getFirstEscrowPoint(_tokenId);
uint256 start = (ts / WEEK) * WEEK;
_tokenLastTime = start > firstBribeTimestamp ? start : firstBribeTimestamp - WEEK;
}
for (k; k < 50; k++) {
if (_tokenLastTime >= _endTimestamp) {
// if we pass the current epoch, exit
break;
}
reward += _earnedTokenId(_tokenId, _rewardToken, uint48(_tokenLastTime));
_tokenLastTime += WEEK;
}
return (reward, _tokenLastTime);
}
/// @notice get the earned rewards
function earnedOwner(address _owner, address _rewardToken, uint256 _timestamp) public view returns (uint256) {
uint256 _balance = balanceOfOwnerAt(_owner, _timestamp);
if (_balance == 0) {
return 0;
} else {
uint256 _rewardPerToken = rewardPerToken(_rewardToken, _timestamp);
uint256 _rewards = (_rewardPerToken * _balance) / 1e32;
return _rewards;
}
}
/// @notice get the earned rewards rounded to closest previous active period
function earnedTokenId(uint256 _tokenId, address _rewardToken, uint48 _timestamp) external view returns (uint256) {
uint48 onClockTimestamp = uint48((_timestamp / WEEK) * WEEK);
return _earnedTokenId(_tokenId, _rewardToken, onClockTimestamp);
}
/// @notice get the earned rewards
function _earnedTokenId(uint256 _tokenId, address _rewardToken, uint48 _weightTimestamp) internal view returns (uint256) {
address _delegatee = IVotingEscrowV2(ve).delegates(_tokenId, _weightTimestamp);
if (_delegatee == address(0)) return 0;
uint256 _power = IVotingEscrowV2(ve).balanceOfNFTAt(_tokenId, _weightTimestamp);
if (_power == 0) return 0;
uint256 _balance = balanceOfOwnerAt(_delegatee, _weightTimestamp);
if (_balance == 0) return 0;
uint256 _delegateePower = IVotingEscrowV2(ve).getPastVotes(_delegatee, _weightTimestamp);
if (_delegateePower == 0) return 0;
uint256 _weight = (_power * 1e18) / _delegateePower;
if (_balance == 0 || _weight == 0) {
return 0;
} else {
uint256 _rewardPerToken = rewardPerToken(_rewardToken, _weightTimestamp);
uint256 _rewards = ((_rewardPerToken * _balance * _weight) / 1e18) / 1e32;
return _rewards;
}
}
/// @notice get the rewards for token
function rewardPerToken(address _rewardsToken, uint256 _timestamp) public view returns (uint256) {
if (_totalSupply[_timestamp] == 0) {
return rewardData[_rewardsToken][_timestamp].rewardsPerEpoch;
}
return (rewardData[_rewardsToken][_timestamp].rewardsPerEpoch * 1e32) / _totalSupply[_timestamp];
}
/* ========== MUTATIVE FUNCTIONS ========== */
/// @notice User votes deposit
/// @dev called on voter.vote() or voter.poke()
/// we save into owner "address" and not "tokenID".
/// Owner must reset before transferring token
function deposit(uint256 amount, address user) external nonReentrant {
require(amount > 0, "Cannot stake 0");
require(msg.sender == voter);
uint256 _startTimestamp = IMinter(minter).active_period();
uint256 _oldSupply = _totalSupply[_startTimestamp];
uint256 _lastBalance = _balances[user][_startTimestamp];
_totalSupply[_startTimestamp] = _oldSupply + amount;
_balances[user][_startTimestamp] = _lastBalance + amount;
emit Staked(user, amount);
}
/// @notice User votes withdrawal
/// @dev called on voter.reset()
function withdraw(uint256 amount, address user) external nonReentrant {
require(amount > 0, "Cannot withdraw 0");
require(msg.sender == voter);
uint256 _startTimestamp = IMinter(minter).active_period();
// incase of bribe contract reset in gauge proxy
if (amount <= _balances[user][_startTimestamp]) {
uint256 _oldSupply = _totalSupply[_startTimestamp];
uint256 _oldBalance = _balances[user][_startTimestamp];
_totalSupply[_startTimestamp] = _oldSupply - amount;
_balances[user][_startTimestamp] = _oldBalance - amount;
emit Withdrawn(user, amount);
}
}
/// @notice Claim the TOKENID rewards
function _getReward(uint256 tokenId, address _owner, address[] memory tokens) internal {
uint256 _tokenLastTime;
uint256 reward = 0;
for (uint256 i = 0; i < tokens.length; i++) {
address _rewardToken = tokens[i];
(reward, _tokenLastTime) = earnedWithTimestampTokenId(tokenId, _rewardToken);
if (reward > 0) {
IERC20(_rewardToken).safeTransfer(_owner, reward);
emit RewardPaid(_owner, _rewardToken, reward);
}
tokenTimestamp[tokenId][_rewardToken] = _tokenLastTime;
}
}
// @notice Claim the TOKENID rewards
function getReward(uint256 tokenId, address[] memory tokens) external nonReentrant {
require(IVotingEscrowV2(ve).isApprovedOrOwner(msg.sender, tokenId));
address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
return _getReward(tokenId, _owner, tokens);
}
/// @notice Claim the rewards given msg.sender
function getReward(address[] memory tokens) external nonReentrant {
address _owner = msg.sender;
uint256 balance = IVotingEscrowV2(ve).balanceOf(_owner);
for (uint256 i = 0; i < balance; i++) {
uint256 tokenId = IVotingEscrowV2(ve).tokenOfOwnerByIndex(_owner, i);
_getReward(tokenId, _owner, tokens);
}
}
/// @notice Claim rewards from voter
function getRewardForOwner(uint256 tokenId, address[] memory tokens) public nonReentrant {
require(msg.sender == voter);
address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
return _getReward(tokenId, _owner, tokens);
}
/// @notice Claim rewards from voter
function getRewardForAddress(address _owner, address[] memory tokens) public nonReentrant {
require(msg.sender == voter);
uint256 balance = IVotingEscrowV2(ve).balanceOf(_owner);
for (uint256 i = 0; i < balance; i++) {
uint256 tokenId = IVotingEscrowV2(ve).tokenOfOwnerByIndex(_owner, i);
_getReward(tokenId, _owner, tokens);
}
}
/// @notice Notify a bribe amount
/// @dev Rewards are saved into NEXT EPOCH mapping.
function notifyRewardAmount(address _rewardsToken, uint256 reward) external nonReentrant {
require(isRewardToken[_rewardsToken], "reward token not verified");
/// @dev Account for tax on transfer tokens
uint256 balanceBefore = IERC20(_rewardsToken).balanceOf(address(this));
IERC20(_rewardsToken).safeTransferFrom(msg.sender, address(this), reward);
uint256 balanceAfter = IERC20(_rewardsToken).balanceOf(address(this));
uint256 effectiveTransfer = balanceAfter - balanceBefore;
uint256 _startTimestamp = IMinter(minter).active_period(); //period points to the current thursday. Bribes are distributed from next epoch (thursday)
if (firstBribeTimestamp == 0) {
firstBribeTimestamp = _startTimestamp;
}
uint256 _lastReward = rewardData[_rewardsToken][_startTimestamp].rewardsPerEpoch;
rewardData[_rewardsToken][_startTimestamp].rewardsPerEpoch = _lastReward + effectiveTransfer;
rewardData[_rewardsToken][_startTimestamp].lastUpdateTime = block.timestamp;
rewardData[_rewardsToken][_startTimestamp].periodFinish = _startTimestamp;
emit RewardAdded(_rewardsToken, effectiveTransfer, _startTimestamp);
}
/* ========== RESTRICTED FUNCTIONS ========== */
/// @notice add rewards tokens
function addRewardTokens(address[] memory _rewardsToken) public onlyAllowed {
uint256 i = 0;
for (i; i < _rewardsToken.length; i++) {
_addRewardToken(_rewardsToken[i]);
}
}
/// @notice add a single reward token
function addRewardToken(address _rewardsToken) public onlyAllowed {
_addRewardToken(_rewardsToken);
}
function _addRewardToken(address _rewardsToken) internal {
if (!isRewardToken[_rewardsToken]) {
isRewardToken[_rewardsToken] = true;
rewardTokens.push(_rewardsToken);
}
}
/// @notice Recover some ERC20 from the contract and updated given bribe
function recoverERC20AndUpdateData(address tokenAddress, uint256 tokenAmount) external onlyAllowed {
require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)));
uint256 _startTimestamp = IMinter(minter).active_period();
uint256 _lastReward = rewardData[tokenAddress][_startTimestamp].rewardsPerEpoch;
rewardData[tokenAddress][_startTimestamp].rewardsPerEpoch = _lastReward - tokenAmount;
rewardData[tokenAddress][_startTimestamp].lastUpdateTime = block.timestamp;
IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
emit Recovered(tokenAddress, tokenAmount);
}
/// @notice Recover some ERC20 from the contract.
/// @dev Be careful --> if called then getReward() at last epoch will fail because some reward are missing!
/// Think about calling recoverERC20AndUpdateData()
function emergencyRecoverERC20(address tokenAddress, uint256 tokenAmount) external onlyAllowed {
require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)));
IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
emit Recovered(tokenAddress, tokenAmount);
}
/// @notice Set a new voter
function setVoter(address _Voter) external onlyAllowed {
require(_Voter != address(0));
voter = _Voter;
}
/// @notice Set a new minter
function setMinter(address _minter) external onlyAllowed {
require(_minter != address(0));
minter = _minter;
}
/// @notice Set a new Owner
event SetOwner(address indexed _owner);
function setOwner(address _owner) external onlyAllowed {
require(_owner != address(0));
owner = _owner;
emit SetOwner(_owner);
}
/* ========== MODIFIERS ========== */
modifier onlyAllowed() {
require((msg.sender == owner || msg.sender == bribeFactory), "permission is denied!");
_;
}
/* ========== EVENTS ========== */
event RewardAdded(address indexed rewardToken, uint256 reward, uint256 startTimestamp);
event Staked(address indexed user, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
event RewardPaid(address indexed user, address indexed rewardsToken, uint256 reward);
event Recovered(address indexed token, uint256 amount);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IBribe {
function deposit(uint amount, address account) external;
function withdraw(uint amount, address account) external;
function getRewardForOwner(uint tokenId, address[] memory tokens) external;
function getRewardForAddress(address _owner, address[] memory tokens) external;
function notifyRewardAmount(address token, uint amount) external;
function addRewardToken(address _rewardsToken) external;
function addRewardTokens(address[] memory _rewardsToken) external;
function setVoter(address _Voter) external;
function setMinter(address _Voter) external;
function setOwner(address _Voter) external;
function emergencyRecoverERC20(address tokenAddress, uint256 tokenAmount) external;
function recoverERC20AndUpdateData(address tokenAddress, uint256 tokenAmount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
import {IERC5805} from "@openzeppelin/contracts/interfaces/IERC5805.sol";
import {Checkpoints} from "../libraries/Checkpoints.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
interface IVotingEscrowV2 is IERC5805, IERC721Enumerable {
struct LockDetails {
uint256 amount; /// @dev amount of tokens locked
uint256 startTime; /// @dev when locking started
uint256 endTime; /// @dev when locking ends
bool isPermanent; /// @dev if its a permanent lock
}
/// -----------------------------------------------------------------------
/// Events
/// -----------------------------------------------------------------------
event SupplyUpdated(uint256 oldSupply, uint256 newSupply);
/// @notice Lock events
event LockCreated(uint256 indexed tokenId, address indexed to, uint256 value, uint256 unlockTime, bool isPermanent);
event LockUpdated(uint256 indexed tokenId, uint256 value, uint256 unlockTime, bool isPermanent);
event LockMerged(
uint256 indexed fromTokenId,
uint256 indexed toTokenId,
uint256 totalValue,
uint256 unlockTime,
bool isPermanent
);
event LockSplit(uint256[] splitWeights, uint256 indexed _tokenId);
event LockDurationExtended(uint256 indexed tokenId, uint256 newUnlockTime, bool isPermanent);
event LockAmountIncreased(uint256 indexed tokenId, uint256 value);
event UnlockPermanent(uint256 indexed tokenId, address indexed sender, uint256 unlockTime);
/// @notice Delegate events
event LockDelegateChanged(
uint256 indexed tokenId,
address indexed delegator,
address fromDelegate,
address indexed toDelegate
);
/// -----------------------------------------------------------------------
/// Errors
/// -----------------------------------------------------------------------
error AlreadyVoted();
error InvalidNonce();
error InvalidDelegatee();
error InvalidSignature();
error InvalidSignatureS();
error LockDurationNotInFuture();
error LockDurationTooLong();
error LockExpired();
error LockNotExpired();
error NoLockFound();
error NotPermanentLock();
error PermanentLock();
error SameNFT();
error SignatureExpired();
error ZeroAmount();
function supply() external view returns (uint);
function token() external view returns (IERC20);
function balanceOfNFT(uint256 _tokenId) external view returns (uint256);
function balanceOfNFTAt(uint256 _tokenId, uint256 _timestamp) external view returns (uint256);
function delegates(uint256 tokenId, uint48 timestamp) external view returns (address);
function lockDetails(uint256 tokenId) external view returns (LockDetails calldata);
function isApprovedOrOwner(address user, uint tokenId) external view returns (bool);
function getPastEscrowPoint(
uint256 _tokenId,
uint256 _timePoint
) external view returns (Checkpoints.Point memory, uint48);
function getFirstEscrowPoint(uint256 _tokenId) external view returns (Checkpoints.Point memory, uint48);
function checkpoint() external;
function increaseAmount(uint256 _tokenId, uint256 _value) external;
function createLockFor(uint256 _value, uint256 _lockDuration, address _to, bool _permanent) external returns (uint256);
function decimals() external view returns(uint8);
}
// SPDX-License-Identifier: MIT
// This file was derived from OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
pragma solidity 0.8.13;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
struct Trace {
Checkpoint[] _checkpoints;
}
/**
* @dev Struct to keep track of the voting power over time.
*/
struct Point {
/// @dev The voting power at a specific time
/// - MUST never be negative.
int128 bias;
/// @dev The rate at which the voting power decreases over time.
int128 slope;
/// @dev The value of tokens which do not decrease over time, representing permanent voting power
/// - MUST never be negative.
int128 permanent;
}
struct Checkpoint {
uint48 _key;
Point _value;
}
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertions();
/**
* @dev Pushes a (`key`, `value`) pair into a Trace so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(Trace storage self, uint48 key, Point memory value) internal returns (Point memory, Point memory) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace storage self, uint48 key) internal view returns (Point memory) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? blankPoint() : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(
Trace storage self,
uint48 key
) internal view returns (bool exists, uint48 _key, Point memory _value) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
exists = pos != 0;
_value = exists ? _unsafeAccess(self._checkpoints, pos - 1)._value : blankPoint();
_key = exists ? _unsafeAccess(self._checkpoints, pos - 1)._key : 0;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(
Trace storage self,
uint48 key
) internal view returns (bool exists, uint48 _key, Point memory _value) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
exists = pos != 0;
_value = exists ? _unsafeAccess(self._checkpoints, pos - 1)._value : blankPoint();
_key = exists ? _unsafeAccess(self._checkpoints, pos - 1)._key : 0;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace storage self) internal view returns (Point memory) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? blankPoint() : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(
Trace storage self
) internal view returns (bool exists, uint48 _key, Point memory _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, blankPoint());
} else {
Checkpoint memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function firstCheckpoint(
Trace storage self
) internal view returns (bool exists, uint48 _key, Point memory _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, blankPoint());
} else {
Checkpoint memory ckpt = _unsafeAccess(self._checkpoints, 0);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace storage self, uint48 pos) internal view returns (Checkpoint memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint[] storage self,
uint48 key,
Point memory value
) private returns (Point memory, Point memory) {
uint256 pos = self.length;
if (pos > 0) {
// Copying to memory is important here.
Checkpoint memory last = _unsafeAccess(self, pos - 1);
// Checkpoint keys must be non-decreasing.
if (last._key > key) {
revert CheckpointUnorderedInsertions();
}
// Update or push new checkpoint
if (last._key == key) {
_unsafeAccess(self, pos - 1)._value = value;
} else {
self.push(Checkpoint({_key: key, _value: value}));
}
return (last._value, value);
} else {
self.push(Checkpoint({_key: key, _value: value}));
return (blankPoint(), value);
}
}
/**
* @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
* `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
* exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(Checkpoint[] storage self, uint256 pos) private view returns (Checkpoint storage result) {
return self[pos];
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _realUnsafeAccess(
Checkpoint[] storage self,
uint256 pos
) private pure returns (Checkpoint storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
function blankPoint() internal pure returns (Point memory) {
return Point({bias: 0, slope: 0, permanent: 0});
}
struct TraceAddress {
CheckpointAddress[] _checkpoints;
}
struct CheckpointAddress {
uint48 _key;
address _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a TraceAddress so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(TraceAddress storage self, uint48 key, address value) internal returns (address, address) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(TraceAddress storage self, uint48 key) internal view returns (address) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? address(0) : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(TraceAddress storage self, uint48 key) internal view returns (address) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(TraceAddress storage self, uint48 key) internal view returns (address) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(TraceAddress storage self) internal view returns (address) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(
TraceAddress storage self
) internal view returns (bool exists, uint48 _key, address _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, address(0));
} else {
CheckpointAddress memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(TraceAddress storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(TraceAddress storage self, uint48 pos) internal view returns (CheckpointAddress memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(CheckpointAddress[] storage self, uint48 key, address value) private returns (address, address) {
uint256 pos = self.length;
if (pos > 0) {
// Copying to memory is important here.
CheckpointAddress memory last = _unsafeAccess(self, pos - 1);
// Checkpoint keys must be non-decreasing.
if (last._key > key) {
revert CheckpointUnorderedInsertions();
}
// Update or push new checkpoint
if (last._key == key) {
_unsafeAccess(self, pos - 1)._value = value;
} else {
self.push(CheckpointAddress({_key: key, _value: value}));
}
return (last._value, value);
} else {
self.push(CheckpointAddress({_key: key, _value: value}));
return (address(0), value);
}
}
/**
* @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
CheckpointAddress[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
* `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
* exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
CheckpointAddress[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
CheckpointAddress[] storage self,
uint256 pos
) private pure returns (CheckpointAddress storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}