ETH Price: $2,893.24 (-1.44%)

Contract Diff Checker

Contract Name:
BribeV2

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.0;

/**
 * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
 *
 * _Available since v4.5._
 */
interface IVotes {
    /**
     * @dev Emitted when an account changes their delegate.
     */
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /**
     * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
     */
    event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) external view returns (uint256);

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     */
    function getPastVotes(address account, uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     */
    function getPastTotalSupply(uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) external view returns (address);

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) external;

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5805.sol)

pragma solidity ^0.8.0;

import "../governance/utils/IVotes.sol";
import "./IERC6372.sol";

interface IERC5805 is IERC6372, IVotes {}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC6372.sol)

pragma solidity ^0.8.0;

interface IERC6372 {
    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
     */
    function clock() external view returns (uint48);

    /**
     * @dev Description of the clock
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

library Constants {
    uint48 constant EPOCH = 1 weeks;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IMinter {
    function update_period() external returns (uint);
    function check() external view returns(bool);
    function period() external view returns(uint);
    function active_period() external view returns(uint);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IVoter {
    function ve() external view returns (address);
    function gauges(address _pair) external view returns (address);
    function isGauge(address _gauge) external view returns (bool);
    function poolForGauge(address _gauge) external view returns (address);
    function factory() external view returns (address);
    function minter() external view returns(address);
    function isWhitelisted(address token) external view returns (bool);
    function notifyRewardAmount(uint amount) external;
    function distributeAll() external;
    function distributeFees(address[] memory _gauges) external;

    function internal_bribes(address _gauge) external view returns (address);
    function external_bribes(address _gauge) external view returns (address);

    function usedWeights(uint id) external view returns(uint);
    function lastVoted(uint id) external view returns(uint);
    function poolVote(uint id, uint _index) external view returns(address _pair);
    function votes(uint id, address _pool) external view returns(uint votes);
    function poolVoteLength(uint tokenId) external view returns(uint);
    
    function attachTokenToGauge(uint _tokenId, address account) external;
    function detachTokenFromGauge(uint _tokenId, address account) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

import "../interfaces/IMinter.sol";
import "../interfaces/IVoter.sol";
import "./VotingEscrow/interfaces/IVotingEscrowV2.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "../Constants.sol";
import "./IBribe.sol";

contract BribeV2 is IBribe, ReentrancyGuard {
    using SafeERC20 for IERC20;

    uint256 public WEEK = Constants.EPOCH; // rewards are released over 7 days
    uint256 public firstBribeTimestamp;

    /* ========== STATE VARIABLES ========== */

    struct Reward {
        uint256 periodFinish;
        uint256 rewardsPerEpoch;
        uint256 lastUpdateTime;
    }

    mapping(address => mapping(uint256 => Reward)) public rewardData; // token -> startTimestamp -> Reward
    mapping(address => bool) public isRewardToken;
    address[] public rewardTokens;
    address public voter;
    address public immutable bribeFactory;
    address public minter;
    address public immutable ve;
    address public owner;

    string public TYPE;

    // owner -> reward token -> lastTime
    mapping(uint256 => mapping(address => uint256)) public tokenTimestamp;

    //uint256 private _totalSupply;
    mapping(uint256 => uint256) private _totalSupply;
    mapping(address => mapping(uint256 => uint256)) private _balances; //owner -> timestamp -> amount

    /* ========== CONSTRUCTOR ========== */

    constructor(address _owner, address _voter, address _bribeFactory, string memory _type) {
        require(_bribeFactory != address(0) && _voter != address(0) && _owner != address(0));
        voter = _voter;
        bribeFactory = _bribeFactory;
        firstBribeTimestamp = 0;
        ve = IVoter(_voter).ve();
        minter = IVoter(_voter).minter();
        require(minter != address(0));
        owner = _owner;
        TYPE = _type;
    }

    /// @notice get the current epoch
    function getEpochStart() public view returns (uint256) {
        return IMinter(minter).active_period();
    }

    /// @notice get next epoch (where bribes are saved)
    function getNextEpochStart() public view returns (uint256) {
        return getEpochStart() + WEEK;
    }

    /* ========== VIEWS ========== */

    /// @notice get the length of the reward tokens
    function rewardsListLength() external view returns (uint256) {
        return rewardTokens.length;
    }

    /// @notice get the last totalSupply (total votes for a pool)
    function totalSupply() external view returns (uint256) {
        uint256 _currentEpochStart = IMinter(minter).active_period(); // claim until current epoch
        return _totalSupply[_currentEpochStart];
    }

    /// @notice get a totalSupply given a timestamp
    function totalSupplyAt(uint256 _timestamp) external view returns (uint256) {
        return _totalSupply[_timestamp];
    }

    /// @notice read the balanceOf the tokenId at a given timestamp
    function balanceOfAt(uint256 tokenId, uint256 _timestamp) public view returns (uint256) {
        address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
        return _balances[_owner][_timestamp];
    }

    /// @notice get last deposit available given a tokenID
    function balanceOf(uint256 tokenId) public view returns (uint256) {
        uint256 _timestamp = getNextEpochStart();
        address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
        return _balances[_owner][_timestamp];
    }

    /// @notice get the balance of an owner in the current epoch
    function balanceOfOwner(address _owner) public view returns (uint256) {
        uint256 _timestamp = getNextEpochStart();
        return _balances[_owner][_timestamp];
    }

    /// @notice get the balance of an owner given a timestamp
    function balanceOfOwnerAt(address _owner, uint256 _timestamp) public view returns (uint256) {
        return _balances[_owner][_timestamp];
    }

    /// @notice Read earned amount given a tokenID and _rewardToken
    function earned(uint256 tokenId, address _rewardToken) public view returns (uint256) {
        uint256 k = 0;
        uint256 reward = 0;
        uint256 _endTimestamp = IMinter(minter).active_period(); // claim until current epoch
        uint256 _tokenLastTime = tokenTimestamp[tokenId][_rewardToken];

        if (_endTimestamp == _tokenLastTime) {
            return 0;
        }

        // if user first time then set it to first bribe - week to avoid any timestamp problem
        if (_tokenLastTime < firstBribeTimestamp) {
            (, uint48 ts) = IVotingEscrowV2(ve).getFirstEscrowPoint(tokenId);
            uint256 start = (ts / WEEK) * WEEK;
            _tokenLastTime = start > firstBribeTimestamp ? start : firstBribeTimestamp - WEEK;
        }

        for (k; k < 50; k++) {
            if (_tokenLastTime >= _endTimestamp) {
                // if we pass the current epoch, exit
                break;
            }
            reward += _earnedTokenId(tokenId, _rewardToken, uint48(_tokenLastTime));
            _tokenLastTime += WEEK;
        }
        return reward;
    }

    /// @notice Read earned amount given address and reward token, returns the rewards and the last user timestamp (used in case user do not claim since 50+epochs)
    function earnedWithTimestampTokenId(uint256 _tokenId, address _rewardToken) private view returns (uint256, uint256) {
        uint256 k = 0;
        uint256 reward = 0;
        uint256 _endTimestamp = IMinter(minter).active_period(); // claim until current epoch
        uint256 _tokenLastTime = tokenTimestamp[_tokenId][_rewardToken];


        // if user first time then set it to first bribe - week to avoid any timestamp problem
        if (_tokenLastTime < firstBribeTimestamp) {
            (, uint48 ts) = IVotingEscrowV2(ve).getFirstEscrowPoint(_tokenId);
            uint256 start = (ts / WEEK) * WEEK;
            _tokenLastTime = start > firstBribeTimestamp ? start : firstBribeTimestamp - WEEK;
        }

        for (k; k < 50; k++) {
            if (_tokenLastTime >= _endTimestamp) {
                // if we pass the current epoch, exit
                break;
            }
            reward += _earnedTokenId(_tokenId, _rewardToken, uint48(_tokenLastTime));
            _tokenLastTime += WEEK;
        }
        return (reward, _tokenLastTime);

    }

    /// @notice get the earned rewards
    function earnedOwner(address _owner, address _rewardToken, uint256 _timestamp) public view returns (uint256) {
        uint256 _balance = balanceOfOwnerAt(_owner, _timestamp);
        if (_balance == 0) {
            return 0;
        } else {
            uint256 _rewardPerToken = rewardPerToken(_rewardToken, _timestamp);
            uint256 _rewards = (_rewardPerToken * _balance) / 1e32;
            return _rewards;
        }
    }

    /// @notice get the earned rewards rounded to closest previous active period
    function earnedTokenId(uint256 _tokenId, address _rewardToken, uint48 _timestamp) external view returns (uint256) {
        uint48 onClockTimestamp = uint48((_timestamp / WEEK) * WEEK);
        return _earnedTokenId(_tokenId, _rewardToken, onClockTimestamp);
    }

    /// @notice get the earned rewards
    function _earnedTokenId(uint256 _tokenId, address _rewardToken, uint48 _weightTimestamp) internal view returns (uint256) {
        address _delegatee = IVotingEscrowV2(ve).delegates(_tokenId, _weightTimestamp);
        if (_delegatee == address(0)) return 0;
        uint256 _power = IVotingEscrowV2(ve).balanceOfNFTAt(_tokenId, _weightTimestamp);
        if (_power == 0) return 0;
        
        uint256 _balance = balanceOfOwnerAt(_delegatee, _weightTimestamp);
        if (_balance == 0) return 0;

        uint256 _delegateePower = IVotingEscrowV2(ve).getPastVotes(_delegatee, _weightTimestamp);
        if (_delegateePower == 0) return 0;

        uint256 _weight = (_power * 1e18) / _delegateePower;
        
        if (_balance == 0 || _weight == 0) {
            return 0;
        } else {
            uint256 _rewardPerToken = rewardPerToken(_rewardToken, _weightTimestamp);
            uint256 _rewards = ((_rewardPerToken * _balance * _weight) / 1e18) / 1e32;
            return _rewards;
        }
    }

    /// @notice get the rewards for token
    function rewardPerToken(address _rewardsToken, uint256 _timestamp) public view returns (uint256) {
        if (_totalSupply[_timestamp] == 0) {
            return rewardData[_rewardsToken][_timestamp].rewardsPerEpoch;
        }
        return (rewardData[_rewardsToken][_timestamp].rewardsPerEpoch * 1e32) / _totalSupply[_timestamp];
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    /// @notice User votes deposit
    /// @dev    called on voter.vote() or voter.poke()
    ///         we save into owner "address" and not "tokenID".
    ///         Owner must reset before transferring token
    function deposit(uint256 amount, address user) external nonReentrant {
        require(amount > 0, "Cannot stake 0");
        require(msg.sender == voter);
        uint256 _startTimestamp = IMinter(minter).active_period();
        uint256 _oldSupply = _totalSupply[_startTimestamp];
        uint256 _lastBalance = _balances[user][_startTimestamp];

        _totalSupply[_startTimestamp] = _oldSupply + amount;
        _balances[user][_startTimestamp] = _lastBalance + amount;

        emit Staked(user, amount);
    }

    /// @notice User votes withdrawal
    /// @dev    called on voter.reset()
    function withdraw(uint256 amount, address user) external nonReentrant {
        require(amount > 0, "Cannot withdraw 0");
        require(msg.sender == voter);
        uint256 _startTimestamp = IMinter(minter).active_period();

        // incase of bribe contract reset in gauge proxy
        if (amount <= _balances[user][_startTimestamp]) {
            uint256 _oldSupply = _totalSupply[_startTimestamp];
            uint256 _oldBalance = _balances[user][_startTimestamp];
            _totalSupply[_startTimestamp] = _oldSupply - amount;
            _balances[user][_startTimestamp] = _oldBalance - amount;
            emit Withdrawn(user, amount);
        }
    }

    /// @notice Claim the TOKENID rewards
    function _getReward(uint256 tokenId, address _owner, address[] memory tokens) internal {
        uint256 _tokenLastTime;
        uint256 reward = 0;

        for (uint256 i = 0; i < tokens.length; i++) {
            address _rewardToken = tokens[i];
            (reward, _tokenLastTime) = earnedWithTimestampTokenId(tokenId, _rewardToken);
            if (reward > 0) {
                IERC20(_rewardToken).safeTransfer(_owner, reward);
                emit RewardPaid(_owner, _rewardToken, reward);
            }
            tokenTimestamp[tokenId][_rewardToken] = _tokenLastTime;
        }
    }

    // @notice Claim the TOKENID rewards
    function getReward(uint256 tokenId, address[] memory tokens) external nonReentrant {
        require(IVotingEscrowV2(ve).isApprovedOrOwner(msg.sender, tokenId));
        address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
        return _getReward(tokenId, _owner, tokens);
    }

    /// @notice Claim the rewards given msg.sender
    function getReward(address[] memory tokens) external nonReentrant {
        address _owner = msg.sender;
        uint256 balance = IVotingEscrowV2(ve).balanceOf(_owner);
        for (uint256 i = 0; i < balance; i++) {
            uint256 tokenId = IVotingEscrowV2(ve).tokenOfOwnerByIndex(_owner, i);
            _getReward(tokenId, _owner, tokens);
        }
    }

    /// @notice Claim rewards from voter
    function getRewardForOwner(uint256 tokenId, address[] memory tokens) public nonReentrant {
        require(msg.sender == voter);
        address _owner = IVotingEscrowV2(ve).ownerOf(tokenId);
        return _getReward(tokenId, _owner, tokens);
    }

    /// @notice Claim rewards from voter
    function getRewardForAddress(address _owner, address[] memory tokens) public nonReentrant {
        require(msg.sender == voter);
        uint256 balance = IVotingEscrowV2(ve).balanceOf(_owner);
        for (uint256 i = 0; i < balance; i++) {
            uint256 tokenId = IVotingEscrowV2(ve).tokenOfOwnerByIndex(_owner, i);
            _getReward(tokenId, _owner, tokens);
        }
    }

    /// @notice Notify a bribe amount
    /// @dev    Rewards are saved into NEXT EPOCH mapping.
    function notifyRewardAmount(address _rewardsToken, uint256 reward) external nonReentrant {
        require(isRewardToken[_rewardsToken], "reward token not verified");
        /// @dev Account for tax on transfer tokens
        uint256 balanceBefore = IERC20(_rewardsToken).balanceOf(address(this));
        IERC20(_rewardsToken).safeTransferFrom(msg.sender, address(this), reward);
        uint256 balanceAfter = IERC20(_rewardsToken).balanceOf(address(this));
        uint256 effectiveTransfer = balanceAfter - balanceBefore;

        uint256 _startTimestamp = IMinter(minter).active_period(); //period points to the current thursday. Bribes are distributed from next epoch (thursday)
        if (firstBribeTimestamp == 0) {
            firstBribeTimestamp = _startTimestamp;
        }

        uint256 _lastReward = rewardData[_rewardsToken][_startTimestamp].rewardsPerEpoch;

        rewardData[_rewardsToken][_startTimestamp].rewardsPerEpoch = _lastReward + effectiveTransfer;
        rewardData[_rewardsToken][_startTimestamp].lastUpdateTime = block.timestamp;
        rewardData[_rewardsToken][_startTimestamp].periodFinish = _startTimestamp;

        emit RewardAdded(_rewardsToken, effectiveTransfer, _startTimestamp);
    }

    /* ========== RESTRICTED FUNCTIONS ========== */

    /// @notice add rewards tokens
    function addRewardTokens(address[] memory _rewardsToken) public onlyAllowed {
        uint256 i = 0;
        for (i; i < _rewardsToken.length; i++) {
            _addRewardToken(_rewardsToken[i]);
        }
    }

    /// @notice add a single reward token
    function addRewardToken(address _rewardsToken) public onlyAllowed {
        _addRewardToken(_rewardsToken);
    }

    function _addRewardToken(address _rewardsToken) internal {
        if (!isRewardToken[_rewardsToken]) {
            isRewardToken[_rewardsToken] = true;
            rewardTokens.push(_rewardsToken);
        }
    }

    /// @notice Recover some ERC20 from the contract and updated given bribe
    function recoverERC20AndUpdateData(address tokenAddress, uint256 tokenAmount) external onlyAllowed {
        require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)));

        uint256 _startTimestamp = IMinter(minter).active_period();
        uint256 _lastReward = rewardData[tokenAddress][_startTimestamp].rewardsPerEpoch;
        rewardData[tokenAddress][_startTimestamp].rewardsPerEpoch = _lastReward - tokenAmount;
        rewardData[tokenAddress][_startTimestamp].lastUpdateTime = block.timestamp;

        IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
        emit Recovered(tokenAddress, tokenAmount);
    }

    /// @notice Recover some ERC20 from the contract.
    /// @dev    Be careful --> if called then getReward() at last epoch will fail because some reward are missing!
    ///         Think about calling recoverERC20AndUpdateData()
    function emergencyRecoverERC20(address tokenAddress, uint256 tokenAmount) external onlyAllowed {
        require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)));
        IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
        emit Recovered(tokenAddress, tokenAmount);
    }

    /// @notice Set a new voter
    function setVoter(address _Voter) external onlyAllowed {
        require(_Voter != address(0));
        voter = _Voter;
    }

    /// @notice Set a new minter
    function setMinter(address _minter) external onlyAllowed {
        require(_minter != address(0));
        minter = _minter;
    }

    /// @notice Set a new Owner
    event SetOwner(address indexed _owner);

    function setOwner(address _owner) external onlyAllowed {
        require(_owner != address(0));
        owner = _owner;
        emit SetOwner(_owner);
    }

    /* ========== MODIFIERS ========== */

    modifier onlyAllowed() {
        require((msg.sender == owner || msg.sender == bribeFactory), "permission is denied!");
        _;
    }

    /* ========== EVENTS ========== */

    event RewardAdded(address indexed rewardToken, uint256 reward, uint256 startTimestamp);
    event Staked(address indexed user, uint256 amount);
    event Withdrawn(address indexed user, uint256 amount);
    event RewardPaid(address indexed user, address indexed rewardsToken, uint256 reward);
    event Recovered(address indexed token, uint256 amount);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IBribe {
    function deposit(uint amount, address account) external;

    function withdraw(uint amount, address account) external;

    function getRewardForOwner(uint tokenId, address[] memory tokens) external;

    function getRewardForAddress(address _owner, address[] memory tokens) external;

    function notifyRewardAmount(address token, uint amount) external;

    function addRewardToken(address _rewardsToken) external;

    function addRewardTokens(address[] memory _rewardsToken) external;

    function setVoter(address _Voter) external;

    function setMinter(address _Voter) external;

    function setOwner(address _Voter) external;

    function emergencyRecoverERC20(address tokenAddress, uint256 tokenAmount) external;

    function recoverERC20AndUpdateData(address tokenAddress, uint256 tokenAmount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

import {IERC5805} from "@openzeppelin/contracts/interfaces/IERC5805.sol";
import {Checkpoints} from "../libraries/Checkpoints.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

interface IVotingEscrowV2 is IERC5805, IERC721Enumerable {
    struct LockDetails {
        uint256 amount; /// @dev amount of tokens locked
        uint256 startTime; /// @dev when locking started
        uint256 endTime; /// @dev when locking ends
        bool isPermanent; /// @dev if its a permanent lock
    }

    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    event SupplyUpdated(uint256 oldSupply, uint256 newSupply);
    /// @notice Lock events
    event LockCreated(uint256 indexed tokenId, address indexed to, uint256 value, uint256 unlockTime, bool isPermanent);
    event LockUpdated(uint256 indexed tokenId, uint256 value, uint256 unlockTime, bool isPermanent);
    event LockMerged(
        uint256 indexed fromTokenId,
        uint256 indexed toTokenId,
        uint256 totalValue,
        uint256 unlockTime,
        bool isPermanent
    );
    event LockSplit(uint256[] splitWeights, uint256 indexed _tokenId);
    event LockDurationExtended(uint256 indexed tokenId, uint256 newUnlockTime, bool isPermanent);
    event LockAmountIncreased(uint256 indexed tokenId, uint256 value);
    event UnlockPermanent(uint256 indexed tokenId, address indexed sender, uint256 unlockTime);
    /// @notice Delegate events
    event LockDelegateChanged(
        uint256 indexed tokenId,
        address indexed delegator,
        address fromDelegate,
        address indexed toDelegate
    );

    /// -----------------------------------------------------------------------
    /// Errors
    /// -----------------------------------------------------------------------

    error AlreadyVoted();
    error InvalidNonce();
    error InvalidDelegatee();
    error InvalidSignature();
    error InvalidSignatureS();
    error LockDurationNotInFuture();
    error LockDurationTooLong();
    error LockExpired();
    error LockNotExpired();
    error NoLockFound();
    error NotPermanentLock();
    error PermanentLock();
    error SameNFT();
    error SignatureExpired();
    error ZeroAmount();

    function supply() external view returns (uint);

    function token() external view returns (IERC20);

    function balanceOfNFT(uint256 _tokenId) external view returns (uint256);
    function balanceOfNFTAt(uint256 _tokenId, uint256 _timestamp) external view returns (uint256);

    function delegates(uint256 tokenId, uint48 timestamp) external view returns (address);

    function lockDetails(uint256 tokenId) external view returns (LockDetails calldata);

    function isApprovedOrOwner(address user, uint tokenId) external view returns (bool);

    function getPastEscrowPoint(
        uint256 _tokenId,
        uint256 _timePoint
    ) external view returns (Checkpoints.Point memory, uint48);

    function getFirstEscrowPoint(uint256 _tokenId) external view returns (Checkpoints.Point memory, uint48);

    function checkpoint() external;

    function increaseAmount(uint256 _tokenId, uint256 _value) external;

    function createLockFor(uint256 _value, uint256 _lockDuration, address _to, bool _permanent) external returns (uint256);
    function decimals() external view returns(uint8);
}

// SPDX-License-Identifier: MIT
// This file was derived from OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)

pragma solidity 0.8.13;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    struct Trace {
        Checkpoint[] _checkpoints;
    }

    /**
     * @dev Struct to keep track of the voting power over time.
     */
    struct Point {
        /// @dev The voting power at a specific time
        /// - MUST never be negative.
        int128 bias;
        /// @dev The rate at which the voting power decreases over time.
        int128 slope;
        /// @dev The value of tokens which do not decrease over time, representing permanent voting power
        /// - MUST never be negative.
        int128 permanent;
    }

    struct Checkpoint {
        uint48 _key;
        Point _value;
    }

    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertions();

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace storage self, uint48 key, Point memory value) internal returns (Point memory, Point memory) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace storage self, uint48 key) internal view returns (Point memory) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? blankPoint() : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(
        Trace storage self,
        uint48 key
    ) internal view returns (bool exists, uint48 _key, Point memory _value) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);

        exists = pos != 0;
        _value = exists ? _unsafeAccess(self._checkpoints, pos - 1)._value : blankPoint();
        _key = exists ? _unsafeAccess(self._checkpoints, pos - 1)._key : 0;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(
        Trace storage self,
        uint48 key
    ) internal view returns (bool exists, uint48 _key, Point memory _value) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        exists = pos != 0;
        _value = exists ? _unsafeAccess(self._checkpoints, pos - 1)._value : blankPoint();
        _key = exists ? _unsafeAccess(self._checkpoints, pos - 1)._key : 0;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace storage self) internal view returns (Point memory) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? blankPoint() : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(
        Trace storage self
    ) internal view returns (bool exists, uint48 _key, Point memory _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, blankPoint());
        } else {
            Checkpoint memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function firstCheckpoint(
        Trace storage self
    ) internal view returns (bool exists, uint48 _key, Point memory _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, blankPoint());
        } else {
            Checkpoint memory ckpt = _unsafeAccess(self._checkpoints, 0);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace storage self, uint48 pos) internal view returns (Checkpoint memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(
        Checkpoint[] storage self,
        uint48 key,
        Point memory value
    ) private returns (Point memory, Point memory) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertions();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint({_key: key, _value: value}));
            return (blankPoint(), value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(Checkpoint[] storage self, uint256 pos) private view returns (Checkpoint storage result) {
        return self[pos];
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _realUnsafeAccess(
        Checkpoint[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    function blankPoint() internal pure returns (Point memory) {
        return Point({bias: 0, slope: 0, permanent: 0});
    }

    struct TraceAddress {
        CheckpointAddress[] _checkpoints;
    }

    struct CheckpointAddress {
        uint48 _key;
        address _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a TraceAddress so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(TraceAddress storage self, uint48 key, address value) internal returns (address, address) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(TraceAddress storage self, uint48 key) internal view returns (address) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? address(0) : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(TraceAddress storage self, uint48 key) internal view returns (address) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(TraceAddress storage self, uint48 key) internal view returns (address) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(TraceAddress storage self) internal view returns (address) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? address(0) : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(
        TraceAddress storage self
    ) internal view returns (bool exists, uint48 _key, address _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, address(0));
        } else {
            CheckpointAddress memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(TraceAddress storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(TraceAddress storage self, uint48 pos) internal view returns (CheckpointAddress memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(CheckpointAddress[] storage self, uint48 key, address value) private returns (address, address) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            CheckpointAddress memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertions();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(CheckpointAddress({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(CheckpointAddress({_key: key, _value: value}));
            return (address(0), value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        CheckpointAddress[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        CheckpointAddress[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        CheckpointAddress[] storage self,
        uint256 pos
    ) private pure returns (CheckpointAddress storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):