ERC-1155
Source Code
Overview
Max Total Supply
0
Holders
427
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Name:
WombatPool
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 1000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import "openzeppelin-contracts/contracts/utils/math/Math.sol";
import "openzeppelin-contracts/contracts/utils/math/SafeCast.sol";
import "openzeppelin-contracts/contracts/utils/math/SafeCast.sol";
import "openzeppelin-contracts/contracts/utils/Strings.sol";
import "openzeppelin-contracts/contracts/token/ERC1155/ERC1155.sol";
import {SD59x18, sd, exp2, log2, convert, pow} from "lib/prb-math/src/SD59x18.sol";
import "src/lib/Token.sol";
import "src/lib/UncheckedMemory.sol";
import "src/lib/PoolBalanceLib.sol";
import {rpow} from "src/lib/RPow.sol";
import "src/pools/SingleTokenGauge.sol";
struct TokenInfo {
uint8 indexPlus1;
uint8 scale;
IGauge gauge;
}
contract WombatPool is ISwap, IBribe, Pool, ERC1155 {
using Strings for address;
using Strings for uint256;
using UncheckedMemory for uint256[];
using UncheckedMemory for int128[];
using UncheckedMemory for Token[];
using SafeCast for int256;
using SafeCast for uint256;
using TokenLib for Token;
event FeeChanged(uint256 fee1e18);
event DecayChanged(uint256 decay);
uint96 public fee1e18;
uint96 public decayRate = 79227950644264186636284806541;
Token[] public tokenList;
mapping(Token => TokenInfo) public tokenInfo;
int256 immutable amp;
int256 immutable cAmp;
function setFee(uint96 fee1e18_) external authenticate {
require(fee1e18_ <= 0.1e18);
fee1e18 = fee1e18_;
emit FeeChanged(fee1e18);
}
function setDecayRate(uint96 decayRate_) external authenticate {
decayRate = decayRate_;
emit DecayChanged(decayRate);
}
constructor(address factory, IVault vault_, uint96 fee1e18_, int256 amp_)
Pool(vault_, address(this), factory)
ERC1155(
string(
abi.encodePacked(
"https://static.velocore.xyz/metadata/",
block.chainid.toString(),
"/",
address(this).toHexString(),
"/{id}.json"
)
)
)
{
fee1e18 = fee1e18_;
amp = amp_;
cAmp = 1e18 - amp;
emit FeeChanged(fee1e18);
emit DecayChanged(decayRate);
}
function addToken(Token t, uint8 decimal) external authenticate {
require(tokenInfo[t].indexPlus1 == 0, "already added");
uint8 index = tokenList.length.toUint8();
tokenList.push(t);
tokenInfo[t].indexPlus1 = index + 1;
tokenInfo[t].scale = 18 - (decimal == 255 ? t.decimals() : decimal);
_mint(address(vault), index, type(uint128).max, "");
vault.notifyInitialSupply(lpToken(index), 0, type(uint128).max);
tokenInfo[t].gauge = new SingleTokenGauge(vault, lpToken(index), this);
}
function lpToken(uint88 i) internal view returns (Token) {
return toToken(TokenSpec.ERC1155, i, address(this));
}
function lpToken(Token t) internal view returns (Token) {
return toToken(TokenSpec.ERC1155, tokenInfo[t].indexPlus1 - 1, address(this));
}
function velocore__execute(address, Token[] calldata t, int128[] memory r, bytes calldata data)
external
returns (int128[] memory deltaGauge, int128[] memory deltaPool)
{
require(t.length == 2, "unsupported operation");
uint256 iu = r.u(0) == type(int128).max ? 0 : 1;
uint256 ik = iu == 0 ? 1 : 0;
require(r.u(iu) == type(int128).max && r.u(ik) != type(int128).max, "no unknowns or knowns");
bool isKnownTokenLP = t.u(ik).addr() == address(this);
bool isUnknownTokenLP = t.u(iu).addr() == address(this);
require(!isUnknownTokenLP || !isKnownTokenLP, "can't swap between LP tokens");
deltaPool = new int128[](2);
deltaGauge = new int128[](2);
if (!isUnknownTokenLP && !isKnownTokenLP) {
if (r.u(ik) < 0) {
int128 plusFee = ((r.u(ik) * int256(1e18)) / (1e18 - int96((fee1e18)))).toInt128();
deltaPool.u(iu, _swap(t.u(ik), t.u(iu), plusFee));
deltaGauge.u(ik, r.u(ik) - plusFee);
deltaPool.u(ik, plusFee);
} else {
deltaPool.u(ik, r.u(ik));
deltaPool.u(iu, _swap(t.u(ik), t.u(iu), r.u(ik)));
deltaGauge.u(iu, -int128((int256(deltaPool.u(iu)) * int96(fee1e18)) / 1e18));
}
} else if (isUnknownTokenLP) {
require(tokenInfo[t.u(ik)].indexPlus1 == t.u(iu).id() + 1, "wrong lp token");
deltaPool.u(ik, r.u(ik));
deltaPool.u(iu, -_deposit(t.u(ik), r.u(ik)));
} else if (isKnownTokenLP) {
require(tokenInfo[t.u(iu)].indexPlus1 == t.u(ik).id() + 1, "wrong lp token");
deltaPool[ik] = r.u(ik);
deltaPool[iu] = _withdraw(t.u(iu), -r.u(ik));
} else {
revert("unsupported operation");
}
}
function partial_invariant(int256 a, int256 l) internal returns (int256) {
if (a == 0) {
require(l == 0);
return 0;
}
return a - (((l * amp) / 1e18) * l) / a;
}
function tokenStat_scaled(Token t) internal returns (int256, int256, int256) {
uint256 scale = 10 ** tokenInfo[t].scale;
int256 l = int256(uint256(type(uint128).max - _getPoolBalance(lpToken(t))) * scale);
int256 a = int256(uint256(_getPoolBalance(t) * scale));
return (a, l, partial_invariant(a, l));
}
function upscale(Token t, int128 x) internal returns (int256) {
unchecked {
return int256(x) * int256(10 ** tokenInfo[t].scale);
}
}
function downscale(Token t, int256 x) internal returns (int128) {
unchecked {
return (x / int256(10 ** tokenInfo[t].scale)).toInt128();
}
}
function _swap(Token k, Token u, int128 dAk) internal returns (int128 dAu) {
(int256 Au, int256 Lu, int256 Du) = tokenStat_scaled(u);
int256 newAu;
{
(int256 Ak, int256 Lk, int256 Dk) = tokenStat_scaled(k);
int256 newDk = partial_invariant(Ak + upscale(k, dAk), Lk);
int256 newDu = Dk + Du - newDk;
int256 _4ac;
unchecked {
_4ac = ((4 * amp * Lu) / 1e18) * Lu;
}
newAu = (newDu + int256(Math.sqrt((newDu * newDu + _4ac).toUint256(), Math.Rounding.Up)) + 1) / 2;
}
return downscale(u, (newAu - Au));
}
function _withdraw(Token t, int128 dL) internal returns (int128 dA) {
(int256 A, int256 L, int256 D) = tokenStat_scaled(t);
int256 sdL = upscale(t, dL);
int256 newL = L + sdL;
int256 dD;
unchecked {
dD = ((sdL * cAmp) / 1e18);
}
int256 newD = D + dD;
int256 b = newD / 2;
return downscale(
t, -A + b + int256(Math.sqrt((b * b + (((newL * amp) / 1e18) * newL)).toUint256(), Math.Rounding.Up))
);
}
function _deposit(Token t, int128 dA) internal returns (int128 dL) {
(int256 A, int256 L, int256 D) = tokenStat_scaled(t);
int256 newA = A + upscale(t, dA);
int256 LA;
int256 b;
unchecked {
LA = (L * amp) / 1e18;
b = ((newA * cAmp) / 1e18) + (2 * LA);
}
int256 _4ac = (4 * amp * (newA * (D - newA) + (L * LA))) / 1e18;
return downscale(t, (int256(Math.sqrt((b * b - _4ac).toUint256())) - b) * 1e18 / (2 * amp));
}
function listedTokens() external view override returns (Token[] memory) {
return tokenList;
}
function swapType() external view override returns (string memory) {
return "wombat";
}
function lpTokens() external view override returns (Token[] memory) {
Token[] memory ret = new Token[](tokenList.length);
for (uint88 i = 0; i < tokenList.length; i++) {
ret[i] = lpToken(i);
}
return ret;
}
function poolParams() external view override(IPool, Pool) returns (bytes memory) {
return abi.encode(fee1e18, amp);
}
function velocore__bribe(IGauge gauge, uint256 elapsed)
external
override
onlyVault
returns (
Token[] memory bribeTokens,
int128[] memory deltaGauge,
int128[] memory deltaPool,
int128[] memory deltaExternal
)
{
Token underlying = tokenList[gauge.stakeableTokens()[0].id()];
require(tokenInfo[underlying].gauge == gauge, "wrong gauge");
uint256 decay = 2 ** 96 - rpow(decayRate, elapsed, 2 ** 96);
uint256 decayed = (_getGaugeBalance(underlying) * decay) / 2 ** 96;
bribeTokens = new Token[](1);
bribeTokens[0] = underlying;
deltaGauge = new int128[](1);
deltaPool = new int128[](1);
deltaExternal = new int128[](1);
deltaGauge.u(0, -int128(int256(decayed)));
}
function bribeTokens(IGauge gauge) external view override returns (Token[] memory bribeTokens) {
Token underlying = tokenList[gauge.stakeableTokens()[0].id()];
require(tokenInfo[underlying].gauge == gauge, "wrong gauge");
bribeTokens = new Token[](1);
bribeTokens[0] = underlying;
}
function underlyingTokens(Token tok) external view returns (Token[] memory) {
require(tok == lpToken(tokenList[tok.id()]));
Token underlying = tokenList[tok.id()];
Token[] memory ret = new Token[](1);
ret[0] = underlying;
return ret;
}
function bribeRates(IGauge gauge) external view override returns (uint256[] memory ret) {
Token underlying = tokenList[gauge.stakeableTokens()[0].id()];
require(tokenInfo[underlying].gauge == gauge, "wrong gauge");
ret = new uint256[](1);
ret[0] = _getGaugeBalance(underlying) * (2 ** 96 - uint256(decayRate)) / 2 ** 96;
}
function totalSupply(uint256 i) external view returns (uint256) {
return type(uint128).max - _getPoolBalance(lpToken(i.toUint88()));
}
function tokenListLength() external view returns (uint256) {
return tokenList.length;
}
function getTokenList() external view returns (Token[] memory ret) {
ret = new Token[](tokenList.length);
for (uint256 i = 0; i < ret.length; i++) {
ret[i] = tokenList[i];
}
}
function gauges(Token t) external view returns (IGauge) {
return tokenInfo[t].gauge;
}
function setFeeToZero() external onlyVault {
fee1e18 = 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.0;
import "./IERC1155.sol";
import "./IERC1155Receiver.sol";
import "./extensions/IERC1155MetadataURI.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*
* _Available since v3.1._
*/
contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI {
using Address for address;
// Mapping from token ID to account balances
mapping(uint256 => mapping(address => uint256)) private _balances;
// Mapping from account to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256) public view virtual override returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
require(account != address(0), "ERC1155: address zero is not a valid owner");
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(address[] memory accounts, uint256[] memory ids)
public
view
virtual
override
returns (uint256[] memory)
{
require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts[i], ids[i]);
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) public virtual override {
require(
from == _msgSender() || isApprovedForAll(from, _msgSender()),
"ERC1155: caller is not token owner or approved"
);
_safeTransferFrom(from, to, id, amount, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) public virtual override {
require(
from == _msgSender() || isApprovedForAll(from, _msgSender()),
"ERC1155: caller is not token owner or approved"
);
_safeBatchTransferFrom(from, to, ids, amounts, data);
}
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) internal virtual {
require(to != address(0), "ERC1155: transfer to the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, from, to, ids, amounts, data);
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
unchecked {
_balances[id][from] = fromBalance - amount;
}
_balances[id][to] += amount;
emit TransferSingle(operator, from, to, id, amount);
_afterTokenTransfer(operator, from, to, ids, amounts, data);
_doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
require(to != address(0), "ERC1155: transfer to the zero address");
address operator = _msgSender();
_beforeTokenTransfer(operator, from, to, ids, amounts, data);
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids[i];
uint256 amount = amounts[i];
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
unchecked {
_balances[id][from] = fromBalance - amount;
}
_balances[id][to] += amount;
}
emit TransferBatch(operator, from, to, ids, amounts);
_afterTokenTransfer(operator, from, to, ids, amounts, data);
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the amounts in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(
address to,
uint256 id,
uint256 amount,
bytes memory data
) internal virtual {
require(to != address(0), "ERC1155: mint to the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
_balances[id][to] += amount;
emit TransferSingle(operator, address(0), to, id, amount);
_afterTokenTransfer(operator, address(0), to, ids, amounts, data);
_doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
require(to != address(0), "ERC1155: mint to the zero address");
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
address operator = _msgSender();
_beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
for (uint256 i = 0; i < ids.length; i++) {
_balances[ids[i]][to] += amounts[i];
}
emit TransferBatch(operator, address(0), to, ids, amounts);
_afterTokenTransfer(operator, address(0), to, ids, amounts, data);
_doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
}
/**
* @dev Destroys `amount` tokens of token type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `amount` tokens of token type `id`.
*/
function _burn(
address from,
uint256 id,
uint256 amount
) internal virtual {
require(from != address(0), "ERC1155: burn from the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
unchecked {
_balances[id][from] = fromBalance - amount;
}
emit TransferSingle(operator, from, address(0), id, amount);
_afterTokenTransfer(operator, from, address(0), ids, amounts, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
*/
function _burnBatch(
address from,
uint256[] memory ids,
uint256[] memory amounts
) internal virtual {
require(from != address(0), "ERC1155: burn from the zero address");
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
address operator = _msgSender();
_beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
for (uint256 i = 0; i < ids.length; i++) {
uint256 id = ids[i];
uint256 amount = amounts[i];
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
unchecked {
_balances[id][from] = fromBalance - amount;
}
}
emit TransferBatch(operator, from, address(0), ids, amounts);
_afterTokenTransfer(operator, from, address(0), ids, amounts, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC1155: setting approval status for self");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `ids` and `amounts` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `id` and `amount` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) private {
if (to.isContract()) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
revert("ERC1155: ERC1155Receiver rejected tokens");
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert("ERC1155: transfer to non-ERC1155Receiver implementer");
}
}
}
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) private {
if (to.isContract()) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
revert("ERC1155: ERC1155Receiver rejected tokens");
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert("ERC1155: transfer to non-ERC1155Receiver implementer");
}
}
}
function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
uint256[] memory array = new uint256[](1);
array[0] = element;
return array;
}
}// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ███████╗██████╗ ███████╗ █████╗ ██╗ ██╗ ██╗ █████╗ ██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗ ███████╗██║ ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝ ╚════██║██║ ██║╚════██║ ╚═══██║ ██╔██╗ ██║██╔══██╗ ███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./sd59x18/Casting.sol"; import "./sd59x18/Constants.sol"; import "./sd59x18/Conversions.sol"; import "./sd59x18/Errors.sol"; import "./sd59x18/Helpers.sol"; import "./sd59x18/Math.sol"; import "./sd59x18/ValueType.sol";
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import "src/lib/UncheckedMemory.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC1155/IERC1155.sol";
import "openzeppelin-contracts/contracts/token/ERC1155/extensions/ERC1155Supply.sol";
import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "openzeppelin-contracts/contracts/token/ERC721/extensions/IERC721Metadata.sol";
// a library for abstracting tokens
// provides a common interface for ERC20, ERC1155, and ERC721 tokens.
bytes32 constant TOKEN_MASK = 0x000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
bytes32 constant ID_MASK = 0x00FFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000;
uint256 constant ID_SHIFT = 160;
bytes32 constant TOKENSPEC_MASK = 0xFF00000000000000000000000000000000000000000000000000000000000000;
string constant NATIVE_TOKEN_SYMBOL = "ETH";
type Token is bytes32;
type TokenSpecType is bytes32;
using {TokenSpec_equals as ==} for TokenSpecType global;
using {Token_equals as ==} for Token global;
using {Token_lt as <} for Token global;
using {Token_lte as <=} for Token global;
using {Token_ne as !=} for Token global;
using UncheckedMemory for Token[];
Token constant NATIVE_TOKEN = Token.wrap(0xEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE);
function TokenSpec_equals(TokenSpecType a, TokenSpecType b) pure returns (bool) {
return TokenSpecType.unwrap(a) == TokenSpecType.unwrap(b);
}
function Token_equals(Token a, Token b) pure returns (bool) {
return Token.unwrap(a) == Token.unwrap(b);
}
function Token_ne(Token a, Token b) pure returns (bool) {
return Token.unwrap(a) != Token.unwrap(b);
}
function Token_lt(Token a, Token b) pure returns (bool) {
return Token.unwrap(a) < Token.unwrap(b);
}
function Token_lte(Token a, Token b) pure returns (bool) {
return Token.unwrap(a) <= Token.unwrap(b);
}
library TokenSpec {
TokenSpecType constant ERC20 =
TokenSpecType.wrap(0x0000000000000000000000000000000000000000000000000000000000000000);
TokenSpecType constant ERC721 =
TokenSpecType.wrap(0x0100000000000000000000000000000000000000000000000000000000000000);
TokenSpecType constant ERC1155 =
TokenSpecType.wrap(0x0200000000000000000000000000000000000000000000000000000000000000);
TokenSpecType constant NATIVE =
TokenSpecType.wrap(0xEE00000000000000000000000000000000000000000000000000000000000000);
}
function toToken(IERC20 tok) pure returns (Token) {
return Token.wrap(bytes32(uint256(uint160(address(tok)))));
}
function toToken(TokenSpecType spec_, uint88 id_, address addr_) pure returns (Token) {
return Token.wrap(
TokenSpecType.unwrap(spec_) | bytes32((bytes32(uint256(id_)) << ID_SHIFT) & ID_MASK)
| bytes32(uint256(uint160(addr_)))
);
}
// binary search on sorted arrays
function _binarySearch(Token[] calldata arr, Token token) view returns (uint256) {
if (arr.length == 0) return type(uint256).max;
uint256 start = 0;
uint256 end = arr.length - 1;
unchecked {
while (start <= end) {
uint256 mid = start + (end - start) / 2;
if (arr.uc(mid) == token) {
return mid;
} else if (arr.uc(mid) < token) {
start = mid + 1;
} else {
if (mid == 0) return type(uint256).max;
end = mid - 1;
}
}
}
return type(uint256).max;
}
// binary search on sorted arrays, memory array version
function _binarySearchM(Token[] memory arr, Token token) view returns (uint256) {
if (arr.length == 0) return type(uint256).max;
uint256 start = 0;
uint256 end = arr.length - 1;
unchecked {
while (start <= end) {
uint256 mid = start + (end - start) / 2;
if (arr.u(mid) == token) {
return mid;
} else if (arr.u(mid) < token) {
start = mid + 1;
} else {
if (mid == 0) return type(uint256).max;
end = mid - 1;
}
}
}
return type(uint256).max;
}
library TokenLib {
using TokenLib for Token;
using TokenLib for bytes32;
using SafeERC20 for IERC20;
using SafeERC20 for IERC20Metadata;
function wrap(bytes32 data) internal pure returns (Token) {
return Token.wrap(data);
}
function unwrap(Token tok) internal pure returns (bytes32) {
return Token.unwrap(tok);
}
function addr(Token tok) internal pure returns (address) {
return address(uint160(uint256(tok.unwrap() & TOKEN_MASK)));
}
function id(Token tok) internal pure returns (uint256) {
return uint256((tok.unwrap() & ID_MASK) >> ID_SHIFT);
}
function spec(Token tok) internal pure returns (TokenSpecType) {
return TokenSpecType.wrap(tok.unwrap() & TOKENSPEC_MASK);
}
function toIERC20(Token tok) internal pure returns (IERC20Metadata) {
return IERC20Metadata(tok.addr());
}
function toIERC1155(Token tok) internal pure returns (IERC1155) {
return IERC1155(tok.addr());
}
function toIERC721(Token tok) internal pure returns (IERC721Metadata) {
return IERC721Metadata(tok.addr());
}
function balanceOf(Token tok, address user) internal view returns (uint256) {
if (tok.spec() == TokenSpec.ERC20) {
require(tok.id() == 0);
return tok.toIERC20().balanceOf(user); // ERC721 balanceOf() has the same signature
} else if (tok.spec() == TokenSpec.ERC1155) {
return tok.toIERC1155().balanceOf(user, tok.id());
} else if (tok.spec() == TokenSpec.ERC721) {
return tok.toIERC721().ownerOf(tok.id()) == user ? 1 : 0;
} else if (tok == NATIVE_TOKEN) {
return user.balance;
}
revert("invalid token");
}
function totalSupply(Token tok) internal view returns (uint256) {
if (tok.spec() == TokenSpec.ERC20) {
require(tok.id() == 0);
return tok.toIERC20().totalSupply(); // ERC721 balanceOf() has the same signature
} else if (tok.spec() == TokenSpec.ERC1155) {
return ERC1155Supply(tok.addr()).totalSupply(tok.id());
} else if (tok.spec() == TokenSpec.ERC721) {
return 1;
} else if (tok == NATIVE_TOKEN) {
revert("ETH total supply unknown");
}
revert("invalid token");
}
function symbol(Token tok) internal view returns (string memory) {
if (tok.spec() == TokenSpec.ERC20) {
require(tok.id() == 0);
return tok.toIERC20().symbol(); // ERC721 balanceOf() has the same signature
} else if (tok.spec() == TokenSpec.ERC1155) {
return "";
} else if (tok.spec() == TokenSpec.ERC721) {
return tok.toIERC721().symbol();
} else if (tok == NATIVE_TOKEN) {
return NATIVE_TOKEN_SYMBOL;
}
revert("invalid token");
}
function decimals(Token tok) internal view returns (uint8) {
if (tok.spec() == TokenSpec.ERC20) {
require(tok.id() == 0);
return IERC20Metadata(tok.addr()).decimals();
} else if (tok == NATIVE_TOKEN) {
return 18;
}
return 0;
}
function transferFrom(Token tok, address from, address to, uint256 amount) internal {
if (tok.spec() == TokenSpec.ERC20) {
require(tok.id() == 0);
if (from == address(this)) {
tok.toIERC20().safeTransfer(to, amount);
} else {
tok.toIERC20().safeTransferFrom(from, to, amount);
}
} else if (tok == NATIVE_TOKEN) {
require(from == address(this), "native token transferFrom is not supported");
assembly {
let success := call(gas(), to, amount, 0, 0, 0, 0)
if iszero(success) { revert(0, 0) }
}
} else if (tok.spec() == TokenSpec.ERC721) {
require(amount == 1, "invalid amount");
tok.toIERC721().safeTransferFrom(from, to, tok.id());
} else if (tok.spec() == TokenSpec.ERC1155) {
tok.toIERC1155().safeTransferFrom(from, to, tok.id(), amount, "");
} else {
revert("invalid token");
}
}
function meteredTransferFrom(Token tok, address from, address to, uint256 amount) internal returns (uint256) {
uint256 balBefore = tok.balanceOf(to);
tok.transferFrom(from, to, amount);
return tok.balanceOf(to) - balBefore;
}
function safeTransferFrom(Token tok, address from, address to, uint256 amount) internal {
require(tok.meteredTransferFrom(from, to, amount) >= amount);
}
}// SPDX-License-Identifier: AUNLICENSED
pragma solidity ^0.8.0;
import {Token} from "src/lib/Token.sol";
// solidity by default perform bound check for every array access.
// we define functions for unchecked access here
library UncheckedMemory {
function u(bytes32[] memory self, uint256 i) internal view returns (bytes32 ret) {
assembly ("memory-safe") {
ret := mload(add(self, mul(32, add(i, 1))))
}
}
function u(bytes32[] memory self, uint256 i, bytes32 v) internal view {
assembly ("memory-safe") {
mstore(add(self, mul(32, add(i, 1))), v)
}
}
function u(uint256[] memory self, uint256 i) internal view returns (uint256 ret) {
assembly ("memory-safe") {
ret := mload(add(self, mul(32, add(i, 1))))
}
}
function u(uint256[] memory self, uint256 i, uint256 v) internal view {
assembly ("memory-safe") {
mstore(add(self, mul(32, add(i, 1))), v)
}
}
function u(int128[] memory self, uint256 i) internal view returns (int128 ret) {
assembly ("memory-safe") {
ret := mload(add(self, mul(32, add(i, 1))))
}
}
function u(int128[] memory self, uint256 i, int128 v) internal view {
assembly ("memory-safe") {
mstore(add(self, mul(32, add(i, 1))), v)
}
}
// uc instead u for calldata array; as solidity does not support type-location overloading.
function uc(Token[] calldata self, uint256 i) internal view returns (Token ret) {
assembly ("memory-safe") {
ret := calldataload(add(self.offset, mul(32, i)))
}
}
function u(Token[] memory self, uint256 i) internal view returns (Token ret) {
assembly ("memory-safe") {
ret := mload(add(self, mul(32, add(i, 1))))
}
}
function u(Token[] memory self, uint256 i, Token v) internal view {
assembly ("memory-safe") {
mstore(add(self, mul(32, add(i, 1))), v)
}
}
}// SPDX-License-Identifier: AUNLICENSED
pragma solidity ^0.8.0;
import "openzeppelin-contracts/contracts/utils/math/SafeCast.sol";
// a pool's balances are stored as two uint128;
// the only difference between them is that new emissions are credited into the gauge balance.
// the pool can use them in any way they want.
type PoolBalance is bytes32;
library PoolBalanceLib {
using PoolBalanceLib for PoolBalance;
using SafeCast for uint256;
using SafeCast for int256;
function gaugeHalf(PoolBalance self) internal pure returns (uint256) {
return uint128(bytes16(PoolBalance.unwrap(self)));
}
function poolHalf(PoolBalance self) internal pure returns (uint256) {
return uint128(uint256(PoolBalance.unwrap(self)));
}
function pack(uint256 a, uint256 b) internal pure returns (PoolBalance) {
uint128 a_ = uint128(a);
uint128 b_ = uint128(b);
require(b == b_ && a == a_, "overflow");
return PoolBalance.wrap(bytes32(bytes16(a_)) | bytes32(uint256(b_)));
}
function credit(PoolBalance self, int256 dGauge, int256 dPool) internal pure returns (PoolBalance) {
return pack(
(int256(uint256(self.gaugeHalf())) + dGauge).toUint256(),
(int256(uint256(self.poolHalf())) + dPool).toUint256()
);
}
function credit(PoolBalance self, int256 dPool) internal pure returns (PoolBalance) {
return pack(self.gaugeHalf(), (int256(uint256(self.poolHalf())) + dPool).toUint256());
}
}// SPDX-License-Identifier: AUNLICENSED // From MakerDAO DSS // Copyright (C) 2018 Rain <[email protected]> // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. pragma solidity ^0.8.0; function rpow(uint256 x, uint256 n, uint256 base) pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { z := base } default { z := 0 } } default { switch mod(n, 2) case 0 { z := base } default { z := x } let half := div(base, 2) // for rounding. for { n := div(n, 2) } n { n := div(n, 2) } { let xx := mul(x, x) if iszero(eq(div(xx, x), x)) { revert(0, 0) } let xxRound := add(xx, half) if lt(xxRound, xx) { revert(0, 0) } x := div(xxRound, base) if mod(n, 2) { let zx := mul(z, x) if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) } let zxRound := add(zx, half) if lt(zxRound, zx) { revert(0, 0) } z := div(zxRound, base) } } } } }
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import "./PoolWithLPToken.sol";
import "src/interfaces/IGauge.sol";
import "src/lib/RPow.sol";
import "src/lib/UncheckedMemory.sol";
import "openzeppelin-contracts/contracts/utils/math/SafeCast.sol";
import "openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
/**
* @dev a base contract for gauges with single stakes.
*
* pretty standard Masterchef-like design.
*
*/
struct StakerInformation {
uint128 staked;
uint128 emissionPerStake1e9AtLastClaim;
}
contract SingleTokenGauge is Pool, IGauge {
using UncheckedMemory for uint256[];
using UncheckedMemory for int128[];
using UncheckedMemory for Token[];
using TokenLib for Token;
using SafeCast for uint256;
using SafeCast for int256;
uint128 emissionPerStake1e9;
mapping(address => StakerInformation) stakerInformation;
Token internal immutable emissionToken;
Token public immutable stake;
constructor(IVault vault_, Token stake_, IBribe bribe) Pool(vault_, address(this), msg.sender) {
emissionToken = vault_.emissionToken();
vault_.attachBribe(this, bribe);
stake = stake_;
}
/**
* called by the vault to nofity new emission
*/
function velocore__emission(uint256 newEmissions) external onlyVault {
if (newEmissions > 0) {
uint256 totalStakes = _getGaugeBalance(stake);
if (totalStakes > 0) {
unchecked {
// totalSupply of emissionToken * 1e9 < uint128_max
emissionPerStake1e9 += uint128(newEmissions * 1e9 / totalStakes);
}
}
}
}
function velocore__gauge(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata)
external
virtual
onlyVault
returns (int128[] memory deltaGauge, int128[] memory deltaPool)
{
deltaGauge = new int128[](tokens.length);
deltaPool = new int128[](tokens.length);
uint256 stakeIndex = _binarySearch(tokens, stake); // assumed to exist
uint256 emissionIndex = _binarySearch(tokens, emissionToken);
unchecked {
// total emissions cannot be greater than the total supply of the emissionToken (200Me18). log10(2^128) - 18 - 9 - 8 > 0; therefore it doesnt overflow.
uint256 claimed = (emissionPerStake1e9 - stakerInformation[user].emissionPerStake1e9AtLastClaim)
* stakerInformation[user].staked / 1e9;
// the total supply of the emissionToken = 200Me18 < int128_max
deltaGauge.u(emissionIndex, -int128(int256(claimed)));
}
if (stakeIndex != type(uint256).max) {
stakerInformation[user].staked =
(int256(uint256(stakerInformation[user].staked)) + amounts.u(stakeIndex)).toUint256().toUint128();
deltaGauge.u(stakeIndex, amounts.u(stakeIndex));
}
stakerInformation[user].emissionPerStake1e9AtLastClaim = emissionPerStake1e9;
}
function stakeableTokens() external view virtual returns (Token[] memory) {
Token v = stake;
assembly {
mstore(0, 0x20)
mstore(0x20, 1)
mstore(0x40, v)
return(0, 0x60)
}
}
function stakedTokens(address user) external view virtual returns (uint256[] memory) {
uint256 v = stakerInformation[user].staked;
assembly {
mstore(0, 0x20)
mstore(0x20, 1)
mstore(0x40, v)
return(0, 0x60)
}
}
function stakedTokens() external view virtual returns (uint256[] memory) {
uint256 v = _getGaugeBalance(stake);
assembly {
mstore(0, 0x20)
mstore(0x20, 1)
mstore(0x40, v)
return(0, 0x60)
}
}
function emissionShare(address user) external view virtual returns (uint256) {
uint256 gb = _getGaugeBalance(stake);
if (gb == 0) return 0;
unchecked {
return (stakerInformation[user].staked * uint256(1e18)) / gb;
}
}
function naturalBribes() external view returns (Token[] memory) {
return ISwap(stake.addr()).listedTokens();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*
* _Available since v3.1._
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the amount of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
external
view
returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.0;
import "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
*
* _Available since v3.1._
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x must be greater than or equal to `uMIN_SD1x18`.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
}
if (xInt > uMAX_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xInt));
}
/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD2x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD59x18 x) pure returns (uint256 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
}
result = uint256(xInt);
}
/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UINT128`.
function intoUint128(SD59x18 x) pure returns (uint128 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT128))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
}
result = uint128(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD59x18 x) pure returns (uint40 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT40))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
}
result = uint40(uint256(xInt));
}
/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);
/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);
/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);
/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);
/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);
/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);
/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);
/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be greater than or equal to `MIN_SD59x18 / UNIT`.
/// - x must be less than or equal to `MAX_SD59x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
if (x < uMIN_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Underflow(x);
}
if (x > uMAX_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Overflow(x);
}
unchecked {
result = SD59x18.wrap(x * uUNIT);
}
}
/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x) / uUNIT;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
return wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(-x.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
unchecked {
result = wrap(-x.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_SD59x18,
uMAX_WHOLE_SD59x18,
uMIN_SD59x18,
uMIN_WHOLE_SD59x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
}
result = xInt < 0 ? wrap(-xInt) : x;
}
/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
unchecked {
// This operation is equivalent to `x / 2 + y / 2`, and it can never overflow.
int256 sum = (xInt >> 1) + (yInt >> 1);
if (sum < 0) {
// If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
// rounds down to infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
assembly ("memory-safe") {
result := add(sum, and(or(xInt, yInt), 1))
}
} else {
// Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
result = wrap(sum + (xInt & yInt & 1));
}
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt > uMAX_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt > 0) {
resultInt += uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
// This check prevents values greater than 192 from being passed to {exp2}.
if (xInt > uEXP_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
int256 doubleUnitProduct = xInt * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
// The inverse of any number less than this is truncated to zero.
if (xInt < -59_794705707972522261) {
return ZERO;
}
unchecked {
// Inline the fixed-point inversion to save gas.
result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
}
} else {
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xInt > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
// It is safe to cast the result to int256 due to the checks above.
result = wrap(int256(Common.exp2(x_192x64)));
}
}
}
/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < uMIN_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt < 0) {
resultInt -= uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % uUNIT);
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == 0 || yInt == 0) {
return ZERO;
}
unchecked {
// Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
int256 xyInt = xInt * yInt;
if (xyInt / xInt != yInt) {
revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
}
// The product must not be negative, since complex numbers are not supported.
if (xyInt < 0) {
revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
uint256 resultUint = Common.sqrt(uint256(xyInt));
result = wrap(int256(resultUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~195_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
default { result := uMAX_SD59x18 }
}
if (result.unwrap() == uMAX_SD59x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm.
///
/// For $0 \leq x \lt 1$, the logarithm is calculated as:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt <= 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
unchecked {
int256 sign;
if (xInt >= uUNIT) {
sign = 1;
} else {
sign = -1;
// Inline the fixed-point inversion to save gas.
xInt = uUNIT_SQUARED / xInt;
}
// Calculate the integer part of the logarithm and add it to the result and finally calculate $y = x * 2^{-n}$.
uint256 n = Common.msb(uint256(xInt / uUNIT));
// This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
// because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
int256 resultInt = int256(n) * uUNIT;
// This is $y = x * 2^{-n}$.
int256 y = xInt >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultInt * sign);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
int256 DOUBLE_UNIT = 2e18;
for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultInt = resultInt + delta;
// Corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
resultInt *= sign;
result = wrap(resultInt);
}
}
/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xInt == 0) {
return yInt == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xInt == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yInt == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yInt == uUNIT) {
return x;
}
// Calculate the result using the formula.
result = exp2(mul(log2(x), y));
}
/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
uint256 xAbs = uint256(abs(x).unwrap());
// Calculate the first iteration of the loop in advance.
uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = Common.mulDiv18(xAbs, xAbs);
// Equivalent to `y % 2 == 1`.
if (yAux & 1 > 0) {
resultAbs = Common.mulDiv18(resultAbs, xAbs);
}
}
// The result must fit in SD59x18.
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
}
unchecked {
// Is the base negative and the exponent odd? If yes, the result should be negative.
int256 resultInt = int256(resultAbs);
bool isNegative = x.unwrap() < 0 && y & 1 == 1;
if (isNegative) {
resultInt = -resultInt;
}
result = wrap(resultInt);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
}
if (xInt > uMAX_SD59x18 / uUNIT) {
revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
}
unchecked {
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
// In this case, the two numbers are both the square root.
uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
result = wrap(int256(resultUint));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoInt256,
Casting.intoSD1x18,
Casting.intoUD2x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Math.abs,
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.log10,
Math.log2,
Math.ln,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.uncheckedUnary,
Helpers.xor
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.or as |,
Helpers.sub as -,
Helpers.unary as -,
Helpers.xor as ^
} for SD59x18 global;// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC1155/extensions/ERC1155Supply.sol)
pragma solidity ^0.8.0;
import "../ERC1155.sol";
/**
* @dev Extension of ERC1155 that adds tracking of total supply per id.
*
* Useful for scenarios where Fungible and Non-fungible tokens have to be
* clearly identified. Note: While a totalSupply of 1 might mean the
* corresponding is an NFT, there is no guarantees that no other token with the
* same id are not going to be minted.
*/
abstract contract ERC1155Supply is ERC1155 {
mapping(uint256 => uint256) private _totalSupply;
/**
* @dev Total amount of tokens in with a given id.
*/
function totalSupply(uint256 id) public view virtual returns (uint256) {
return _totalSupply[id];
}
/**
* @dev Indicates whether any token exist with a given id, or not.
*/
function exists(uint256 id) public view virtual returns (bool) {
return ERC1155Supply.totalSupply(id) > 0;
}
/**
* @dev See {ERC1155-_beforeTokenTransfer}.
*/
function _beforeTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual override {
super._beforeTokenTransfer(operator, from, to, ids, amounts, data);
if (from == address(0)) {
for (uint256 i = 0; i < ids.length; ++i) {
_totalSupply[ids[i]] += amounts[i];
}
}
if (to == address(0)) {
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids[i];
uint256 amount = amounts[i];
uint256 supply = _totalSupply[id];
require(supply >= amount, "ERC1155: burn amount exceeds totalSupply");
unchecked {
_totalSupply[id] = supply - amount;
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import "src/interfaces/IVault.sol";
import "src/lib/Token.sol";
import "./Pool.sol";
/**
* @dev a base contract for pools with single ERC20 lp token.
*
* Two notable features:
* <1>
* Inspired by composable pools of Balancer, it mints MAX_SUPPLY tokens to the vault on initialization, allowing this pool to 'mint' lp tokens from velocore__execute().
* However, the initial mint only happens in vault's perspective; balanceOf() and totalSupply() is customized to trick the vault into thinking it has MAX_SUPPLY tokens.
* when msg.sender != vault, the view functions behave normally.
*
* <2>
* the vault has max allowance on every addresses by default, and this can't be changed.
*/
abstract contract PoolWithLPToken is Pool, IERC20 {
uint128 constant MAX_SUPPLY = uint128(type(uint112).max);
string public name;
string public symbol;
mapping(address => uint256) _balanceOf;
mapping(address => mapping(address => uint256)) _allowance;
function _initialize(string memory name_, string memory symbol_) internal {
name = name_;
symbol = symbol_;
_mintVirtualSupply();
}
function _mintVirtualSupply() internal {
_balanceOf[address(vault)] = MAX_SUPPLY;
vault.notifyInitialSupply(toToken(this), 0, MAX_SUPPLY); // this sets pool balances to the given value.
}
/**
* @dev due to the mechanism of 'minting' by transferring, mint and burn events behave weirdly.
* this function should be called whenever new tokens are created by transferring.
* these simulate minting and burning from/to the vault.
*/
function _simulateMint(uint256 amount) internal {
emit Transfer(address(0), address(vault), amount);
}
function _simulateBurn(uint256 amount) internal {
emit Transfer(address(vault), address(0), amount);
}
/**
* @dev vault balance is subtracted by pool balance to behave "normally"
*/
function balanceOf(address addr) external view returns (uint256) {
if (msg.sender != address(vault) && addr == address(vault)) {
unchecked {
return _balanceOf[addr] - _getPoolBalance(toToken(this));
}
}
return _balanceOf[addr];
}
function decimals() external view virtual returns (uint8) {
return 18;
}
function allowance(address from, address spender) external view returns (uint256) {
return (spender == address(vault)) ? type(uint256).max : _allowance[from][spender];
}
/**
* @dev subtracted by pool balance to behave "normally"
*/
function totalSupply() public view virtual returns (uint256) {
return MAX_SUPPLY - _getPoolBalance(toToken(this));
}
function approve(address spender, uint256 amount) public virtual returns (bool) {
_allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function increaseAllowance(address _spender, uint256 _addedValue) public returns (bool) {
approve(_spender, _allowance[msg.sender][_spender] + _addedValue);
return true;
}
function decreaseAllowance(address _spender, uint256 _subtractedValue) public returns (bool) {
approve(_spender, _allowance[msg.sender][_spender] - _subtractedValue);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
_balanceOf[msg.sender] -= amount;
unchecked {
_balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
if (msg.sender != address(vault)) {
uint256 allowed = _allowance[from][msg.sender];
if (allowed != type(uint256).max) _allowance[from][msg.sender] = allowed - amount;
}
_balanceOf[from] -= amount;
unchecked {
_balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
import "src/interfaces/IPool.sol";
/**
* Gauges are just pools.
* instead of velocore__execute, they interact with velocore__gauge.
* (un)staking is done by putting/extracting staking token (usually LP token) from/into the pool with velocore__gauge.
* harvesting is done by setting the staking amount to zero.
*/
interface IGauge is IPool {
/**
* @dev This method is called by Vault.execute().
* the parameters and return values are the same as velocore__execute.
* The only difference is that the vault will call velocore__emission before calling velocore__gauge.
*/
function velocore__gauge(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data)
external
returns (int128[] memory deltaGauge, int128[] memory deltaPool);
/**
* @dev This method is called by Vault.execute() before calling velocore__emission or changing votes.
*
* The vault will credit emitted VC into the gauge balance.
* IGauge is expected to update its internal ledger.
* @param newEmissions newly emitted VCs since last emission
*/
function velocore__emission(uint256 newEmissions) external;
function stakeableTokens() external view returns (Token[] memory);
function stakedTokens(address user) external view returns (uint256[] memory);
function stakedTokens() external view returns (uint256[] memory);
function emissionShare(address user) external view returns (uint256);
function naturalBribes() external view returns (Token[] memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates floor(x*y÷denominator) with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded down.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates floor(x*y÷1e18) with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded down.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates floor(x*y÷denominator) with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - Unlike {mulDiv}, the result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// This works thanks to two's complement.
// "sgt" stands for "signed greater than" and "sub(0,1)" is max uint256.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round down the result.
uint256 roundedDownResult = x / result;
if (result >= roundedDownResult) {
result = roundedDownResult;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int256 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD2x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD1x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for UD2x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoUD2x18,
Casting.intoSD59x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.ln,
Math.log10,
Math.log2,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.xor
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.or as |,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.sub as -,
Helpers.xor as ^
} for UD60x18 global;// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/interfaces/IAuthorizer.sol";
import "src/interfaces/IFacet.sol";
import "src/interfaces/IGauge.sol";
import "src/interfaces/IConverter.sol";
import "src/interfaces/IBribe.sol";
import "src/interfaces/ISwap.sol";
import "src/lib/Token.sol";
bytes32 constant SSLOT_HYPERCORE_TREASURY = bytes32(uint256(keccak256("hypercore.treasury")) - 1);
bytes32 constant SSLOT_HYPERCORE_AUTHORIZER = bytes32(uint256(keccak256("hypercore.authorizer")) - 1);
bytes32 constant SSLOT_HYPERCORE_ROUTINGTABLE = bytes32(uint256(keccak256("hypercore.routingTable")) - 1);
bytes32 constant SSLOT_HYPERCORE_POOLBALANCES = bytes32(uint256(keccak256("hypercore.poolBalances")) - 1);
bytes32 constant SSLOT_HYPERCORE_USERBALANCES = bytes32(uint256(keccak256("hypercore.userBalances")) - 1);
bytes32 constant SSLOT_HYPERCORE_EMISSIONINFORMATION = bytes32(uint256(keccak256("hypercore.emissionInformation")) - 1);
bytes32 constant SSLOT_REENTRACNYGUARD_LOCKED = bytes32(uint256(keccak256("ReentrancyGuard.locked")) - 1);
bytes32 constant SSLOT_PAUSABLE_PAUSED = bytes32(uint256(keccak256("Pausable.paused")) - 1);
struct VelocoreOperation {
bytes32 poolId;
bytes32[] tokenInformations;
bytes data;
}
interface IVault {
struct Facet {
address facetAddress;
bytes4[] functionSelectors;
}
enum FacetCutAction {
Add,
Replace,
Remove
}
// Add=0, Replace=1, Remove=2
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
event Swap(ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Gauge(IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Convert(IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Vote(IGauge indexed pool, address indexed user, int256 voteDelta);
event UserBalance(address indexed to, address indexed from, Token[] tokenRef, int128[] delta);
event BribeAttached(IGauge indexed gauge, IBribe indexed bribe);
event BribeKilled(IGauge indexed gauge, IBribe indexed bribe);
event GaugeKilled(IGauge indexed gauge, bool killed);
function notifyInitialSupply(Token, uint128, uint128) external;
function attachBribe(IGauge gauge, IBribe bribe) external;
function killBribe(IGauge gauge, IBribe bribe) external;
function killGauge(IGauge gauge, bool t) external;
function ballotToken() external returns (Token);
function emissionToken() external returns (Token);
function execute(Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops)
external
payable;
function facets() external view returns (Facet[] memory facets_);
function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_);
function facetAddresses() external view returns (address[] memory facetAddresses_);
function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_);
function query(address user, Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops)
external
returns (int128[] memory);
function admin_setFunctions(address implementation, bytes4[] calldata sigs) external;
function admin_addFacet(IFacet implementation) external;
function admin_setAuthorizer(IAuthorizer auth_) external;
function admin_pause(bool t) external;
function admin_setTreasury(address treasury) external;
function inspect(address lens, bytes memory data) external;
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
import "src/lib/PoolBalanceLib.sol";
import "src/lib/UncheckedMemory.sol";
import "src/interfaces/IVault.sol";
import "src/interfaces/ISwap.sol";
import "src/interfaces/IAuthorizer.sol";
import "src/VaultStorage.sol";
import "./Satellite.sol";
/**
* @dev a base contract for pools.
*
* - holds pool-specific slot of vault's storage as an immutable value.
* - provides getters for the slot.
*
*/
abstract contract Pool is IPool, Satellite {
using PoolBalanceLib for PoolBalance;
using UncheckedMemory for bytes32[];
using UncheckedMemory for Token[];
bytes32 immutable vaultStorageSlot;
/**
* @param selfAddr doesnt use address(this) because some pools upgradeable, in which case address(this) would be the implementation address.
*/
constructor(IVault vault_, address selfAddr, address factory) Satellite(vault_, factory) {
bytes32 slot = SSLOT_HYPERCORE_POOLBALANCES;
assembly ("memory-safe") {
mstore(0, selfAddr)
mstore(32, slot)
slot := keccak256(0, 64)
}
vaultStorageSlot = slot;
}
/**
* pool balance is stored as two uint128; poolBalance and gaugeBalance.
*/
function _getPoolBalance(Token token) internal view returns (uint256) {
return PoolBalance.wrap(_readVaultStorage(_computeVaultStorageSlot(token))).poolHalf();
}
function _getGaugeBalance(Token token) internal view returns (uint256) {
return PoolBalance.wrap(_readVaultStorage(_computeVaultStorageSlot(token))).gaugeHalf();
}
function _getPoolBalances(Token[] memory tokens) internal view returns (uint256[] memory ret2) {
address vaultAddress = address(vault);
uint256 tokenLength = tokens.length;
bytes32[] memory ret = new bytes32[](tokenLength);
unchecked {
for (uint256 i = 0; i < tokenLength; ++i) {
ret.u(i, _computeVaultStorageSlot(tokens.u(i)));
}
assembly ("memory-safe") {
let len := mload(ret)
mstore(ret, 0x0000000000000000000000000000000000000000000000000000000072656164)
let success :=
staticcall(gas(), vaultAddress, add(ret, 28), add(4, mul(len, 32)), add(ret, 32), mul(32, len))
if iszero(success) { revert(0, 0) }
mstore(ret, len)
}
for (uint256 i = 0; i < tokenLength; ++i) {
ret.u(i, bytes32(PoolBalance.wrap(ret.u(i)).poolHalf()));
}
assembly ("memory-safe") {
ret2 := ret
}
}
}
/**
* @return ret the storage slot for _poolBalances()[selfAddr][token]
*/
function _computeVaultStorageSlot(Token token) internal view returns (bytes32 ret) {
bytes32 vaultStorageSlot_ = vaultStorageSlot;
assembly ("memory-safe") {
mstore(0, token)
mstore(32, vaultStorageSlot_)
ret := keccak256(0, 64)
}
}
function poolParams() external view virtual override returns (bytes memory) {
return "";
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
interface IPool {
function poolParams() external view returns (bytes memory);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
}
result = UD2x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";
/// @notice Casts a UD2x18 number into SD1x18.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(uMAX_SD1x18)) {
revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xUint));
}
/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}
/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
result = uint128(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
result = uint256(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD2x18 x) pure returns (uint40 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}
/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
result = UD2x18.unwrap(x);
}
/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD1x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(xUint)));
}
/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD2x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(xUint));
}
/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(uMAX_SD59x18)) {
revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
}
result = SD59x18.wrap(int256(xUint));
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT128) {
revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
}
result = uint128(xUint);
}
/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT40) {
revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
//
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded down.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + delta * (remainder > 0 ? 1 : 0)`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder * (remainder > 0 ? 1 : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded down.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm.
///
/// For $0 \leq x < 1$, the logarithm is calculated as:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm, add it to the result and finally calculate $y = x * 2^{-n}$.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// This is $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is greater than `UNIT`, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x is less than `UNIT`, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded down.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}// SPDX-License-Identifier: UNLICENSED
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
interface IAuthorizer {
/**
* @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
*/
function canPerform(bytes32 actionId, address account, address where) external view returns (bool);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
interface IFacet {
function initializeFacet() external;
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
interface IConverter {
/**
* @dev This method is called by Vault.execute().
* Vault will transfer any positively specified amounts directly to the IConverter before calling velocore__convert.
*
* Instead of returning balance delta numbers, IConverter is expected to directly transfer outputs back to vault.
* Vault will measure the difference, and credit the user.
*/
function velocore__convert(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data)
external;
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
import "./IGauge.sol";
import "./IPool.sol";
interface IBribe is IPool {
/**
* @dev This method is called when someone vote/harvest from/to a @param gauge,
* and when this IBribe happens to be attached to the gauge.
*
* Attachment can happen without IBribe's permission. Implementations must verify that @param gauge is correct.
*
* Returns balance deltas; their net differences are credited as bribe.
* deltaExternal must be zero or negative; Vault will take specified amounts from the contract's balance
*
* @param gauge the gauge to bribe for.
* @param elapsed elapsed time after last call; can be used to save gas.
* @return bribeTokens list of tokens to bribe
* @return deltaGauge same order as bribeTokens, the desired change of gauge balance
* @return deltaPool same order as bribeTokens, the desired change of pool balance
* @return deltaExternal same order as bribeTokens, the vault will pull this amount out from the bribe contract with transferFrom()
*/
function velocore__bribe(IGauge gauge, uint256 elapsed)
external
returns (
Token[] memory bribeTokens,
int128[] memory deltaGauge,
int128[] memory deltaPool,
int128[] memory deltaExternal
);
function bribeTokens(IGauge gauge) external view returns (Token[] memory);
function bribeRates(IGauge gauge) external view returns (uint256[] memory);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
import "./IPool.sol";
interface ISwap is IPool {
/**
* @param user the user that requested swap
* @param tokens sorted, unique list of tokens that user asked to swap
* @param amounts same order as tokens, requested change of token balance, positive when pool receives, negative when pool gives. type(int128).max for unknown values, for which the pool should decide.
* @param data auxillary data for pool-specific uses.
* @return deltaGauge same order as tokens, the desired change of gauge balance
* @return deltaPool same order as bribeTokens, the desired change of pool balance
*/
function velocore__execute(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data)
external
returns (int128[] memory, int128[] memory);
function swapType() external view returns (string memory);
function listedTokens() external view returns (Token[] memory);
function lpTokens() external view returns (Token[] memory);
function underlyingTokens(Token lp) external view returns (Token[] memory);
//function spotPrice(Token token, Token base) external view returns (uint256);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import "src/lib/Token.sol";
import "src/interfaces/IVault.sol";
import "src/interfaces/IGauge.sol";
import "src/lib/PoolBalanceLib.sol";
import "src/interfaces/IGauge.sol";
import "src/interfaces/IBribe.sol";
import "src/interfaces/IAuthorizer.sol";
import "openzeppelin-contracts/contracts/utils/structs/BitMaps.sol";
import "openzeppelin-contracts/contracts/utils/StorageSlot.sol";
import "openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
// A base contract inherited by every facet.
// Vault stores everything on named slots, in order to:
// - prevent storage collision
// - make information access cheaper. (see Diamond.yul)
// The downside of doing that is that storage access becomes exteremely verbose;
// We define large singleton structs to mitigate that.
struct EmissionInformation {
// a singleton struct for emission-related global data
// accessed as `_e()`
uint128 perVote; // (number of VC tokens ever emitted, per vote) * 1e9; monotonically increasing.
uint128 totalVotes; // the current sum of votes on all pool
mapping(IGauge => GaugeInformation) gauges; // per-guage informations
}
struct GaugeInformation {
// we use `lastBribeUpdate == 1` as a special value indicating a killed gauge
// note that this is updated with bribe calculation, not emission calculation, unlike perVoteAtLastEmissionUpdate
uint32 lastBribeUpdate;
uint112 perVoteAtLastEmissionUpdate;
//
// total vote on this gauge
uint112 totalVotes;
//
mapping(address => uint256) userVotes;
//
// bribes are contracts; we call them to extort bribes on demand
EnumerableSet.AddressSet bribes;
//
// for storing extorted bribes.
// we track (accumulated reward / vote), per bribe contract, per token
// we separately track rewards from different bribes, to contain bad-behaving bribe contracts
mapping(IBribe => mapping(Token => Rewards)) rewards;
}
// tracks the distribution of a single token
struct Rewards {
// accumulated rewards per vote * 1e9
uint256 current;
// `accumulated rewards per vote * 1e9` at the moment of last claim of the user
mapping(address => uint256) snapshots;
}
struct RoutingTable {
EnumerableSet.Bytes32Set sigs;
mapping(address => EnumerableSet.Bytes32Set) sigsByImplementation;
}
contract VaultStorage {
using EnumerableSet for EnumerableSet.Bytes32Set;
event Swap(ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Gauge(IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Convert(IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta);
event Vote(IGauge indexed pool, address indexed user, int256 voteDelta);
event UserBalance(address indexed to, address indexed from, Token[] tokenRef, int128[] delta);
event BribeAttached(IGauge indexed gauge, IBribe indexed bribe);
event BribeKilled(IGauge indexed gauge, IBribe indexed bribe);
event GaugeKilled(IGauge indexed gauge, bool killed);
enum FacetCutAction {
Add,
Replace,
Remove
}
// Add=0, Replace=1, Remove=2
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
function _getImplementation(bytes4 sig) internal view returns (address impl, bool readonly) {
assembly ("memory-safe") {
impl := sload(not(shr(0xe0, sig)))
if iszero(lt(impl, 0x10000000000000000000000000000000000000000)) {
readonly := 1
impl := not(impl)
}
}
}
function _setFunction(bytes4 sig, address implementation) internal {
(address oldImplementation,) = _getImplementation(sig);
FacetCut[] memory a = new FacetCut[](1);
a[0].facetAddress = implementation;
a[0].action = FacetCutAction.Add;
a[0].functionSelectors = new bytes4[](1);
a[0].functionSelectors[0] = sig;
if (oldImplementation != address(0)) a[0].action = FacetCutAction.Replace;
if (implementation == address(0)) a[0].action = FacetCutAction.Remove;
emit DiamondCut(a, implementation, "");
assembly ("memory-safe") {
sstore(not(shr(0xe0, sig)), implementation)
}
if (oldImplementation != address(0)) {
_routingTable().sigsByImplementation[oldImplementation].remove(sig);
}
if (implementation == address(0)) {
_routingTable().sigs.remove(sig);
} else {
_routingTable().sigs.add(sig);
_routingTable().sigsByImplementation[implementation].add(sig);
}
}
// viewer implementations are stored as `not(implementation)`. please refer to Diamond.yul for more information
function _setViewer(bytes4 sig, address implementation) internal {
(address oldImplementation,) = _getImplementation(sig);
FacetCut[] memory a = new FacetCut[](1);
a[0].facetAddress = implementation;
a[0].action = FacetCutAction.Add;
a[0].functionSelectors = new bytes4[](1);
a[0].functionSelectors[0] = sig;
if (oldImplementation != address(0)) a[0].action = FacetCutAction.Replace;
if (implementation == address(0)) a[0].action = FacetCutAction.Remove;
emit DiamondCut(a, implementation, "");
assembly ("memory-safe") {
sstore(not(shr(0xe0, sig)), not(implementation))
}
if (oldImplementation != address(0)) {
_routingTable().sigsByImplementation[oldImplementation].remove(sig);
}
if (implementation == address(0)) {
_routingTable().sigs.remove(sig);
} else {
_routingTable().sigs.add(sig);
_routingTable().sigsByImplementation[implementation].add(sig);
}
}
function _routingTable() internal pure returns (RoutingTable storage ret) {
bytes32 slot = SSLOT_HYPERCORE_ROUTINGTABLE;
assembly ("memory-safe") {
ret.slot := slot
}
}
// each pool has two accounts of balance: gauge balance and pool balance; both are uint128.
// they are stored in a wrapped bytes32, PoolBalance
// the only difference between them is that new emissions are credited into the gauge balance.
// the pool can use them in any way they want.
function _poolBalances() internal pure returns (mapping(IPool => mapping(Token => PoolBalance)) storage ret) {
bytes32 slot = SSLOT_HYPERCORE_POOLBALANCES;
assembly ("memory-safe") {
ret.slot := slot
}
}
function _e() internal pure returns (EmissionInformation storage ret) {
bytes32 slot = SSLOT_HYPERCORE_EMISSIONINFORMATION;
assembly ("memory-safe") {
ret.slot := slot
}
}
// users can also store tokens directly in the vault; their balances are tracked separately.
function _userBalances() internal pure returns (mapping(address => mapping(Token => uint256)) storage ret) {
bytes32 slot = SSLOT_HYPERCORE_USERBALANCES;
assembly ("memory-safe") {
ret.slot := slot
}
}
modifier nonReentrant() {
require(StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value < 2, "REENTRANCY");
StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 2;
_;
StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 1;
}
modifier whenNotPaused() {
require(StorageSlot.getUint256Slot(SSLOT_PAUSABLE_PAUSED).value == 0, "PAUSED");
_;
}
// this contract delegates access control to another contract, IAuthenticator.
// this design was inspired by Balancer.
// actionId is a function of method signature and contract address
modifier authenticate() {
authenticateCaller();
_;
}
function authenticateCaller() internal {
bytes32 actionId = keccak256(abi.encodePacked(bytes32(uint256(uint160(address(this)))), msg.sig));
require(
IAuthorizer(StorageSlot.getAddressSlot(SSLOT_HYPERCORE_AUTHORIZER).value).canPerform(
actionId, msg.sender, address(this)
),
"unauthorized"
);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import "src/interfaces/IVault.sol";
/**
* @dev a base contract for peripheral contracts.
*
* 1. delegates access control to the vault
* 2. use Diamond.yul's 'read' intrinsic function to read its storages
*
*/
contract Satellite {
IVault immutable vault;
address immutable factory;
constructor(IVault vault_, address factory_) {
vault = vault_;
factory = factory_;
}
modifier onlyVault() {
require(msg.sender == address(vault), "only vault");
_;
}
function _readVaultStorage(bytes32 slot) internal view returns (bytes32 ret) {
address vaultAddress = address(vault);
assembly ("memory-safe") {
mstore(0, 0x7265616400000000000000000000000000000000000000000000000000000000)
mstore(4, slot)
let success := staticcall(gas(), vaultAddress, 0, 36, 0, 32)
if iszero(success) { revert(0, 0) }
ret := mload(0)
}
}
modifier authenticate() {
require(
IAuthorizer(address(uint160(uint256(_readVaultStorage(SSLOT_HYPERCORE_AUTHORIZER))))).canPerform(
keccak256(abi.encodePacked(bytes32(uint256(uint160(factory))), msg.sig)), msg.sender, address(this)
),
"unauthorized"
);
_;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);
/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);
/// @notice Thrown when taking the logarithm of a number less than 1.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);
/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);
/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);
/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);
/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);
/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);
/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
* Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*/
library BitMaps {
struct BitMap {
mapping(uint256 => uint256) _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
return bitmap._data[bucket] & mask != 0;
}
/**
* @dev Sets the bit at `index` to the boolean `value`.
*/
function setTo(
BitMap storage bitmap,
uint256 index,
bool value
) internal {
if (value) {
set(bitmap, index);
} else {
unset(bitmap, index);
}
}
/**
* @dev Sets the bit at `index`.
*/
function set(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] &= ~mask;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
}{
"remappings": [
"@prb/test/=lib/prb-math/lib/prb-test/src/",
"ds-test/=lib/solmate/lib/ds-test/src/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"prb-math/=lib/prb-math/src/",
"prb-test/=lib/prb-math/lib/prb-test/src/",
"solmate/=lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 1000
},
"metadata": {
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"viaIR": true,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"factory","type":"address"},{"internalType":"contract IVault","name":"vault_","type":"address"},{"internalType":"uint96","name":"fee1e18_","type":"uint96"},{"internalType":"int256","name":"amp_","type":"int256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"decay","type":"uint256"}],"name":"DecayChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee1e18","type":"uint256"}],"name":"FeeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[{"internalType":"Token","name":"t","type":"bytes32"},{"internalType":"uint8","name":"decimal","type":"uint8"}],"name":"addToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"}],"name":"bribeRates","outputs":[{"internalType":"uint256[]","name":"ret","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"}],"name":"bribeTokens","outputs":[{"internalType":"Token[]","name":"bribeTokens","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decayRate","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee1e18","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"Token","name":"t","type":"bytes32"}],"name":"gauges","outputs":[{"internalType":"contract IGauge","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenList","outputs":[{"internalType":"Token[]","name":"ret","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"listedTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolParams","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint96","name":"decayRate_","type":"uint96"}],"name":"setDecayRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint96","name":"fee1e18_","type":"uint96"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setFeeToZero","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapType","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"Token","name":"","type":"bytes32"}],"name":"tokenInfo","outputs":[{"internalType":"uint8","name":"indexPlus1","type":"uint8"},{"internalType":"uint8","name":"scale","type":"uint8"},{"internalType":"contract IGauge","name":"gauge","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenList","outputs":[{"internalType":"Token","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenListLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"Token","name":"tok","type":"bytes32"}],"name":"underlyingTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"},{"internalType":"uint256","name":"elapsed","type":"uint256"}],"name":"velocore__bribe","outputs":[{"internalType":"Token[]","name":"bribeTokens","type":"bytes32[]"},{"internalType":"int128[]","name":"deltaGauge","type":"int128[]"},{"internalType":"int128[]","name":"deltaPool","type":"int128[]"},{"internalType":"int128[]","name":"deltaExternal","type":"int128[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"Token[]","name":"t","type":"bytes32[]"},{"internalType":"int128[]","name":"r","type":"int128[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"velocore__execute","outputs":[{"internalType":"int128[]","name":"deltaGauge","type":"int128[]"},{"internalType":"int128[]","name":"deltaPool","type":"int128[]"}],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
610120604081815234620006525760808262005297803803809162000025828562000657565b833981010312620006525781516001600160a01b039290838116810362000652576020908183015194851685036200065257828401516001600160601b0380821694909290918590036200065257602186916060620001439401519846806000917a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008082101562000644575b50896d04ee2d6d415b85acef81000000008084101562000635575b5050662386f26fc100008083101562000625575b506305f5e1008083101562000615575b506127108083101562000605575b506064821015620005f4575b600a928380931015620005eb575b6001968188809301620001346200012a82620006a8565b9b519b8c62000657565b808b52601f199b8c91620006a8565b01368b8f0137890101905b620005ba575b50508a516001600160401b039690915030606083018881118482101762000502578d52602a83528a83018d368237835115620005a457603090538251871015620005a4576078602184015360295b8781116200055a575062000518579189620002146200023493888f7f68747470733a2f2f7374617469632e76656c6f636f72652e78797a2f6d65746199989764646174612f60d81b826200020593519c8d9889015287015260458601906200067b565b602f60f81b815201906200067b565b6917bdb4b23e973539b7b760b11b81520360151981018652018462000657565b60805260a052306000527f41cdc826884889a9d86ce2ed24c534af045774747691a4897641494ae5dd896b86528760002060c052805192831162000502576002548281811c91168015620004f7575b87821014620004e157601f811162000492575b508590601f84116001146200042a57839450908392916000946200041e575b50501b916000199060031b1c1916176002555b77ffffd322811856132a79458d0000000000000000000000008360018060c01b031960035416171790816003558560e052670de0b6b3a76400006000878203971281881281169188139015161762000408577f6bbc57480a46553fa4d156ce702beef5f3ad66303b0ed1a5d4cb44966c6584c3837f78e0b45656b8fb6065c79a36aeaf92fbf473dc06966bb96e5fe995247e887503956101009889528751908152a184519160601c168152a151614bd29182620006c58339608051828181610d71015281816110da015281816125230152818161256f01526127ce015260a051826106dc015260c051828181610e8c0152818161120b015281816115260152818161378f01526137e3015260e05182818161063601528181613457015281816136f20152818161394a01526139aa0152518181816138d801526139e10152f35b634e487b7160e01b600052601160045260246000fd5b015192503880620002b5565b9193831691600260005283876000209360005b89888383106200047a575050501062000460575b505050811b01600255620002c8565b015160001960f88460031b161c1916905538808062000451565b8686015188559096019594850194879350016200043d565b600260005286600020601f850160051c810191888610620004d6575b601f0160051c019083905b828110620004c957505062000296565b60008155018390620004b9565b9091508190620004ae565b634e487b7160e01b600052602260045260246000fd5b90607f169062000283565b634e487b7160e01b600052604160045260246000fd5b60648a8d519062461bcd60e51b825280600483015260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152fd5b90600f81166010811015620005a4578451831015620005a4576f181899199a1a9b1b9c1cb0b131b232b360811b901a8483018d015360041c908015620004085760001901620001a2565b634e487b7160e01b600052603260045260246000fd5b600019019082906f181899199a1a9b1b9c1cb0b131b232b360811b8282061a8353049086826200014e575062000154565b60010162000113565b919060646002910491019162000105565b60049193920491019138620000f9565b60089193920491019138620000eb565b60109193920491019138620000db565b930192909104908938620000c7565b8793508104915038620000ac565b600080fd5b601f909101601f19168101906001600160401b038211908210176200050257604052565b9081519160005b83811062000694575050016000815290565b806020809284010151818501520162000682565b6001600160401b0381116200050257601f01601f19166020019056fe608060405260043610156200001357600080fd5b60003560e01c8062fdd58e146200022057806301ffc9a7146200021a57806303565ea114620002145780630b1150de146200020e5780630e89341c146200020857806319706b3814620002025780631fe8df1014620001fc57806321ee6d9e14620001f6578063273cbaa014620001f05780632eb2c2d614620001ea57806334c0b46b14620001e4578063376fc5bf14620001de5780634a3d6bda14620001d85780634e1273f414620001d25780636b35b93d14620001cc57806388c0b95714620001c65780639a552a2914620001c05780639acaa0f414620001ba5780639ead722214620001b4578063a22cb46514620001ae578063a9c1f2f114620001a8578063ae275dce14620001a2578063bd85b039146200019c578063ce98f8aa1462000196578063dc6913331462000190578063e985e9c5146200018a578063ec3788081462000184578063f242432a146200017e5763f38a02d0146200017857600080fd5b62001a6f565b620018c0565b6200180a565b620016ce565b6200168e565b620015d0565b620014c8565b62001488565b62001438565b62001321565b620012c2565b62001173565b62001153565b62001119565b620010b9565b62000fe9565b62000f55565b62000d3f565b62000c2c565b62000a19565b62000816565b620007ed565b6200068a565b62000608565b620004e7565b620003e6565b6200034b565b62000289565b6200023d565b6001600160a01b038116036200023857565b600080fd5b3462000238576040366003190112620002385760206200026e600435620002648162000226565b6024359062001ad3565b604051908152f35b6001600160e01b03198116036200023857565b3462000238576020366003190112620002385760206001600160e01b0319600435620002b58162000276565b167fd9b67a2600000000000000000000000000000000000000000000000000000000811490811562000320575b8115620002f5575b506040519015158152f35b7f01ffc9a70000000000000000000000000000000000000000000000000000000091501438620002ea565b7f0e89341c0000000000000000000000000000000000000000000000000000000081149150620002e2565b34620002385760203660031901126200023857600435600052600560205260606040600020546001600160a01b036040519160ff8116835260ff8160081c16602084015260101c166040820152f35b90815180825260208080930193019160005b828110620003bb575050505090565b835185529381019392810192600101620003ac565b906020620003e39281815201906200039a565b90565b346200023857602036600319011262000238576004356affffffffffffffffffffff8160a01c166004548110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0154906200044c8262003827565b036200023857620004889060046000526200046662001b7b565b90620004728262001bf5565b526040519182916020835260208301906200039a565b0390f35b62001274565b919082519283825260005b848110620004bf575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016200049d565b906020620003e392818152019062000492565b34620002385760208060031936011262000238576040519060009060025460019181831c92808316928315620005f1575b8285108414620005dd578487526020870193908115620005bb57506001146200055c575b62000488866200054f818803826200091b565b60405191829182620004d4565b6002600090815294509192917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b838610620005a957505050910190506200054f8262000488386200053c565b8054858701529482019481016200058a565b60ff1916845250505090151560051b0190506200054f8262000488386200053c565b602486634e487b7160e01b81526022600452fd5b93607f169362000518565b60009103126200023857565b34620002385760003660031901126200023857620004886001600160601b03600354166040519060208201527f00000000000000000000000000000000000000000000000000000000000000006040820152604081526200066981620008e1565b60405191829160208352602083019062000492565b60ff8116036200023857565b3462000238576040366003190112620002385762000781602435620006af816200067e565b6020620006d7620006cb620006cb620006cb620006cb620024e3565b6001600160a01b031690565b6040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168382019081526000356001600160e01b03191660208201529062000735816024840103601f1981018352826200091b565b5190206040517f9be2a884000000000000000000000000000000000000000000000000000000008152600481019190915233602482015230604482015293849190829081906064820190565b03915afa918215620007e757620007b092620007a791600091620007b2575b5062002437565b60043562002702565b005b620007d8915060203d8111620007df575b620007cf81836200091b565b8101906200241f565b38620007a0565b503d620007c3565b62001fa9565b3462000238576000366003190112620002385760206001600160601b0360035416604051908152f35b346200023857600080600319360112620008ad5760048054906200083a8262001b97565b90835b82518110156200089557838110156200048c576200088f90828652807f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b015462000888828662001c03565b5262001be5565b6200083d565b6040516020808252819062000488908201866200039a565b80fd5b634e487b7160e01b600052604160045260246000fd5b67ffffffffffffffff8111620008db57604052565b620008b0565b6060810190811067ffffffffffffffff821117620008db57604052565b6040810190811067ffffffffffffffff821117620008db57604052565b90601f8019910116810190811067ffffffffffffffff821117620008db57604052565b67ffffffffffffffff8111620008db5760051b60200190565b81601f82011215620002385780359162000971836200093e565b926200098160405194856200091b565b808452602092838086019260051b82010192831162000238578301905b828210620009ad575050505090565b813581529083019083016200099e565b81601f82011215620002385780359067ffffffffffffffff8211620008db5760405192620009f6601f8401601f1916602001856200091b565b828452602083830101116200023857816000926020809301838601378301015290565b34620002385760a0366003190112620002385760043562000a3a8162000226565b6024359062000a498262000226565b67ffffffffffffffff90604435828111620002385762000a6e90369060040162000957565b91606435818111620002385762000a8a90369060040162000957565b90608435908111620002385762000aa6903690600401620009bd565b926001600160a01b039384841694338614801562000bf0575b62000aca9062001cfc565b62000ad9835185511462001e84565b861662000ae881151562001d6e565b60005b835181101562000ba8578062000b0662000ba2928662001c03565b5162000b9a62000b918b62000b4262000b20868c62001c03565b51948c62000b808762000b5a8362000b42866000526000602052604060002090565b906001600160a01b0316600052602052604060002090565b5462000b698282101562001de0565b039162000b42846000526000602052604060002090565b556000526000602052604060002090565b91825462001e76565b905562001be5565b62000aeb565b5093869194620007b0966040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb33918062000be68a8a8362001ef6565b0390a4336200238a565b5085600052600160205262000aca60ff62000c22336040600020906001600160a01b0316600052602052604060002090565b5416905062000abf565b3462000238576000366003190112620002385760045462000c4d8162001b97565b60005b6affffffffffffffffffffff811683811015620008955762000c8f600160f91b306affffffffffffffffffffff60a01b8560a01b161717918462001c03565b526affffffffffffffffffffff80911690811462000cb05760010162000c50565b62001bcf565b90815180825260208080930193019160005b82811062000cd7575050505090565b8351600f0b8552938101939281019260010162000cc8565b9262000d21620003e3959362000d1262000d30946080885260808801906200039a565b90868203602088015262000cb6565b90848203604086015262000cb6565b91606081840391015262000cb6565b3462000238576040366003190112620002385760043562000d608162000226565b6001600160a01b03809162000d99827f000000000000000000000000000000000000000000000000000000000000000016331462003a88565b166040519063165cad8d60e01b8252600082600481845afa8015620007e75762000df862000df262000dde62000e029362000e349660009162000f2f575b5062001bf5565b5160a01c6affffffffffffffffffffff1690565b6200128a565b90549060031b1c90565b9262000e2c62000e1c856000526005602052604060002090565b5460101c6001600160a01b031690565b161462003b58565b62000ece62000ec862000e7a62000e7460243562000e6e62000e626003546001600160601b039060601c1690565b6001600160601b031690565b62003ba4565b62002403565b62000ec262000ebc62000eb6866000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b6200254f565b60801c90565b62003737565b60601c90565b9062000ed962001b7b565b9062000ee58262001bf5565b526200048862000ef462001b7b565b9262000eff62001b7b565b62000f2262000f1b62000f1162001b7b565b93600f0b62002db2565b8660200152565b6040519485948562000cef565b62000f4e913d8091833e62000f4581836200091b565b81019062003ad4565b3862000dd7565b346200023857600036600319011262000238576040518060045480825282602080930160046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b9260005b8582821062000fd25750505062000fbc925003836200091b565b620004886040519282849384528301906200039a565b855484526001958601958895509301920162000fa2565b3462000238576040366003190112620002385760043567ffffffffffffffff808211620002385736602383011215620002385781600401356200102c816200093e565b926200103c60405194856200091b565b81845260209160248386019160051b830101913683116200023857602401905b8282106200109d578560243586811162000238576200048891620010896200109092369060040162000957565b9062001c18565b60405191829182620003d0565b8380918335620010ad8162000226565b8152019101906200105c565b34620002385760003660031901126200023857620011026001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016331462003a88565b600380546bffffffffffffffffffffffff19169055005b34620002385760203660031901126200023857600435600052600560205260206001600160a01b0360406000205460101c16604051908152f35b346200023857600036600319011262000238576020600454604051908152f35b34620002385760203660031901126200023857600435620011948162000226565b6001600160a01b038091169060405163165cad8d60e01b8152600081600481865afa928315620007e75762000e0262000df862000df262000dde6200048897620011e79660009162000f2f575062001bf5565b6200125b62000ec86200123562000ebc62000eb66200120562001b7b565b956000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b6200125462000e7462000e626003546001600160601b039060601c1690565b9062003737565b620012668262001bf5565b5260405191829182620003d0565b634e487b7160e01b600052603260045260246000fd5b6004548110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0190600090565b34620002385760203660031901126200023857600435600454811015620002385760209060046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0154604051908152f35b801515036200023857565b34620002385760403660031901126200023857600435620013428162000226565b602435620013508162001316565b6001600160a01b03821691823314620013ce57816200138b6200139c9262000b42336001600160a01b03166000526001602052604060002090565b9060ff801983541691151516179055565b604051901515815233907f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3190602090a3005b608460405162461bcd60e51b815260206004820152602960248201527f455243313135353a2073657474696e6720617070726f76616c2073746174757360448201527f20666f722073656c6600000000000000000000000000000000000000000000006064820152fd5b3462000238576000366003190112620002385760206001600160601b0360035460601c16604051908152f35b602090600319011262000238576004356001600160601b0381168103620002385790565b3462000238576200149d620006af3662001464565b03915afa918215620007e757620007b092620014c291600091620007b2575062002437565b6200248b565b346200023857602036600319011262000238576004356affffffffffffffffffffff81116200156657600160f91b906200155062000eb66001600160801b039384936affffffffffffffffffffff60a01b309160a01b1617176000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b16810390811162000cb057604051908152602090f35b608460405162461bcd60e51b815260206004820152602660248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203860448201527f38206269747300000000000000000000000000000000000000000000000000006064820152fd5b34620002385760203660031901126200023857600435620015f18162000226565b6001600160a01b038091169060405163165cad8d60e01b8152600081600481865afa908115620007e75760009162001671575b508051156200048c57620004889262000e0262000df862000df260206200165b9501516affffffffffffffffffffff9060a01c1690565b6200166562001b7b565b90620012668262001bf5565b62001687913d8091833e62000f4581836200091b565b3862001624565b346200023857620016a3620006af3662001464565b03915afa918215620007e757620007b092620016c891600091620007b2575062002437565b6200259b565b34620002385760403660031901126200023857602060ff62001733600435620016f78162000226565b6001600160a01b03602435916200170e8362000226565b16600052600184526040600020906001600160a01b0316600052602052604060002090565b54166040519015158152f35b81601f82011215620002385780359162001759836200093e565b926200176960405194856200091b565b808452602092838086019260051b82010192831162000238578301905b82821062001795575050505090565b813580600f0b81036200023857815290830190830162001786565b9181601f84011215620002385782359167ffffffffffffffff83116200023857602083818601950101116200023857565b9091620017fb620003e39360408452604084019062000cb6565b91602081840391015262000cb6565b346200023857608036600319011262000238576200182a60043562000226565b60243567ffffffffffffffff8082116200023857366023830112156200023857816004013581811162000238573660248260051b8501011162000238576044358281116200023857620018829036906004016200173f565b916064359081116200023857620018ae93620018a56024923690600401620017b0565b50500162002ebe565b906200048860405192839283620017e1565b34620002385760a03660031901126200023857600435620018e18162000226565b602435620018ef8162000226565b6084359060643560443567ffffffffffffffff841162000238576200191d62001a30943690600401620009bd565b926001600160a01b039586811696338814801562001a33575b620019419062001cfc565b82166200195081151562001d6e565b6200195b84620023e8565b506200196785620023e8565b506000978489528860205285620019948460408c20906001600160a01b0316600052602052604060002090565b54620019a38282101562001de0565b868b528a60205203620019cc8460408c20906001600160a01b0316600052602052604060002090565b55620019e78462000b42876000526000602052604060002090565b620019f487825462001e76565b9055604080518681526020810188905233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291a4336200220c565b80f35b508760005260016020526200194160ff62001a65336040600020906001600160a01b0316600052602052604060002090565b5416905062001936565b346200023857600036600319011262000238576200048860405162001a9481620008fe565b600681527f776f6d6261740000000000000000000000000000000000000000000000000000602082015260405191829160208352602083019062000492565b6001600160a01b0381161562001b115762001b0d9160005260006020526040600020906001600160a01b0316600052602052604060002090565b5490565b608460405162461bcd60e51b815260206004820152602a60248201527f455243313135353a2061646472657373207a65726f206973206e6f742061207660448201527f616c6964206f776e6572000000000000000000000000000000000000000000006064820152fd5b6040519062001b8a82620008fe565b6001825260203681840137565b9062001ba3826200093e565b62001bb260405191826200091b565b828152809262001bc5601f19916200093e565b0190602036910137565b634e487b7160e01b600052601160045260246000fd5b600019811462000cb05760010190565b8051156200048c5760200190565b80518210156200048c5760209160051b010190565b919091805183510362001c925762001c31815162001b97565b9060005b815181101562001c8b578062001c7962001c6562001c5862001c85948662001c03565b516001600160a01b031690565b62001c71838962001c03565b519062001ad3565b62000888828662001c03565b62001c35565b5090925050565b608460405162461bcd60e51b815260206004820152602960248201527f455243313135353a206163636f756e747320616e6420696473206c656e67746860448201527f206d69736d6174636800000000000000000000000000000000000000000000006064820152fd5b1562001d0457565b608460405162461bcd60e51b815260206004820152602e60248201527f455243313135353a2063616c6c6572206973206e6f7420746f6b656e206f776e60448201527f6572206f7220617070726f7665640000000000000000000000000000000000006064820152fd5b1562001d7657565b608460405162461bcd60e51b815260206004820152602560248201527f455243313135353a207472616e7366657220746f20746865207a65726f20616460448201527f64726573730000000000000000000000000000000000000000000000000000006064820152fd5b1562001de857565b608460405162461bcd60e51b815260206004820152602a60248201527f455243313135353a20696e73756666696369656e742062616c616e636520666f60448201527f72207472616e73666572000000000000000000000000000000000000000000006064820152fd5b906001820180921162000cb057565b906001600160801b03820180921162000cb057565b9190820180921162000cb057565b1562001e8c57565b608460405162461bcd60e51b815260206004820152602860248201527f455243313135353a2069647320616e6420616d6f756e7473206c656e6774682060448201527f6d69736d617463680000000000000000000000000000000000000000000000006064820152fd5b909162001f10620003e3936040845260408401906200039a565b9160208184039101526200039a565b90816020910312620002385751620003e38162000276565b620003e393926001600160a01b0360a0931682526000602083015260408201526001600160801b036060820152816080820152019062000492565b9192620003e395949160a0946001600160a01b03809216855216602084015260408301526060820152816080820152019062000492565b6040513d6000823e3d90fd5b60009060033d1162001fc357565b905060046000803e60005160e01c90565b600060443d10620003e357604051600319913d83016004833e815167ffffffffffffffff918282113d602484011117620020385781840194855193841162002040573d85010160208487010111620020385750620003e3929101602001906200091b565b949350505050565b50949350505050565b92919091823b6200205b575b50505050565b6200208c9260209260006001600160a01b0360405180978196829563f23a6e6160e01b9b8c85526004850162001f37565b0393165af160009181620021d5575b506200216f5750506001620020af62001fb5565b6308c379a0146200213a575b620020cb575b3880808062002055565b60405162461bcd60e51b815260206004820152603460248201527f455243313135353a207472616e7366657220746f206e6f6e2d4552433131353560448201527f526563656976657220696d706c656d656e7465720000000000000000000000006064820152608490fd5b0390fd5b6200214462001fd4565b80620021515750620020bb565b620021369060405191829162461bcd60e51b835260048301620004d4565b6001600160e01b03191614620020c15760405162461bcd60e51b815260206004820152602860248201527f455243313135353a204552433131353552656365697665722072656a656374656044820152676420746f6b656e7360c01b6064820152608490fd5b620021fc91925060203d811162002204575b620021f381836200091b565b81019062001f1f565b90386200209b565b503d620021e7565b9493919092813b62002221575b505050505050565b60006001600160a01b03602095620022526040519889978896879463f23a6e6160e01b9d8e87526004870162001f72565b0393165af16000918162002310575b50620022aa57505060016200227562001fb5565b6308c379a01462002293575b620020cb575b38808080808062002219565b6200229d62001fd4565b8062002151575062002281565b6001600160e01b03191614620022875760405162461bcd60e51b815260206004820152602860248201527f455243313135353a204552433131353552656365697665722072656a656374656044820152676420746f6b656e7360c01b6064820152608490fd5b6200232d91925060203d81116200220457620021f381836200091b565b903862002261565b9390620003e395936200236c916200237b946001600160a01b03809216885216602087015260a0604087015260a08601906200039a565b9084820360608601526200039a565b91608081840391015262000492565b9493919092813b6200239e57505050505050565b60006001600160a01b0360209562002252604051988997889687947fbc197c81000000000000000000000000000000000000000000000000000000009d8e87526004870162002335565b620023f262001b7b565b908151156200048c57602082015290565b906c0100000000000000000000000091820391821162000cb057565b90816020910312620002385751620003e38162001316565b156200243f57565b606460405162461bcd60e51b815260206004820152600c60248201527f756e617574686f72697a656400000000000000000000000000000000000000006044820152fd5b156200023857565b6001600160601b031667016345785d8a0000811162000238576020817f6bbc57480a46553fa4d156ce702beef5f3ad66303b0ed1a5d4cb44966c6584c3926001600160601b03196003541617600355604051908152a1565b6000631c99585960e21b81527f0ebf818546cf436ba3e823ca878b84c3d55a00f566d51f4b07ec1ab90533db4e6004526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa15620008ad575190565b600090631c99585960e21b82526004526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa15620008ad575190565b60207f78e0b45656b8fb6065c79a36aeaf92fbf473dc06966bb96e5fe995247e887503917fffffffffffffffff000000000000000000000000ffffffffffffffffffffffff77ffffffffffffffffffffffff0000000000000000000000006003549260601b16911617806003556001600160601b036040519160601c168152a1565b156200262557565b606460405162461bcd60e51b815260206004820152600d60248201527f616c7265616479206164646564000000000000000000000000000000000000006044820152fd5b60045468010000000000000000811015620008db5760018101806004558110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0155565b60ff60019116019060ff821162000cb057565b60ff166012039060ff821162000cb057565b604051906020820182811067ffffffffffffffff821117620008db5760405260008252565b6200273060ff6200272862002721846000526005602052604060002090565b5460ff1690565b16156200261d565b6200273d60045462002a8d565b91620027498262002669565b6200277c6200275884620026b8565b6200276d846000526005602052604060002090565b9060ff1660ff19825416179055565b60ff81811603620029645750620027cc620027a16200279b8362002b1e565b620026cb565b620027b6836000526005602052604060002090565b9061ff0082549160081b169061ff001916179055565b7f0000000000000000000000000000000000000000000000000000000000000000916001600160a01b0392600160f91b84821692620028196200280e620026dd565b60ff83168662002973565b60a01b60ff60a01b1630171791803b1562000238576040517fd2441f03000000000000000000000000000000000000000000000000000000008152600481018490526000602482018190526001600160801b03604483015290918290606490829084905af18015620007e75762002946575b5060405191610f37908184019084821067ffffffffffffffff831117620008db578493620028d59362003c6686396001600160a01b03168252602082015230604082015260600190565b03906000f08015620007e7576200294492620028fd9116916000526005602052604060002090565b907fffffffffffffffffffff0000000000000000000000000000000000000000ffff75ffffffffffffffffffffffffffffffffffffffff000083549260101b169116179055565b565b80620029566200295d92620008c6565b80620005fc565b386200288b565b620027a1620027cc91620026cb565b91906001600160a01b03831692831562002a23576200299282620023e8565b506200299d62001b7b565b938451156200048c576001600160801b03602062002944960152620029d18262000b42856000526000602052604060002090565b620029dd815462001e61565b9055604080518481526001600160801b03602082015260009133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629190a43362002049565b608460405162461bcd60e51b815260206004820152602160248201527f455243313135353a206d696e7420746f20746865207a65726f2061646472657360448201527f73000000000000000000000000000000000000000000000000000000000000006064820152fd5b60ff811162002a9c5760ff1690565b608460405162461bcd60e51b815260206004820152602560248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203860448201527f20626974730000000000000000000000000000000000000000000000000000006064820152fd5b90816020910312620002385751620003e3816200067e565b7fff00000000000000000000000000000000000000000000000000000000000000811662002bde5760208162002b6d6affffffffffffffffffffff6001600160a01b039460a01c161562002483565b6004604051809481937f313ce567000000000000000000000000000000000000000000000000000000008352165afa908115620007e75760009162002bb0575090565b620003e3915060203d811162002bd6575b62002bcd81836200091b565b81019062002b06565b503d62002bc1565b7feeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee1462002c0a57600090565b601290565b1562002c1757565b60405162461bcd60e51b815260206004820152601560248201527f756e737570706f72746564206f7065726174696f6e00000000000000000000006044820152606490fd5b1562002c6457565b606460405162461bcd60e51b815260206004820152601560248201527f6e6f20756e6b6e6f776e73206f72206b6e6f776e7300000000000000000000006044820152fd5b929162002cb5826200093e565b9162002cc560405193846200091b565b829481845260208094019160051b81019283116200023857905b82821062002ced5750505050565b8135815290830190830162002cdf565b1562002d0557565b606460405162461bcd60e51b815260206004820152601c60248201527f63616e27742073776170206265747765656e204c5020746f6b656e73000000006044820152fd5b6040519062002d5882620008e1565b600282526040366020840137565b1562002d6e57565b606460405162461bcd60e51b815260206004820152600e60248201527f77726f6e67206c7020746f6b656e0000000000000000000000000000000000006044820152fd5b600f0b6f7fffffffffffffffffffffffffffffff19811462000cb05760000390565b90670de0b6b3a76400009182810292818405149015171562000cb057565b818102929160008212600160ff1b82141662000cb057818405149015171562000cb057565b634e487b7160e01b600052601260045260246000fd5b811562002e4a57600160ff1b811460001983141662000cb0570590565b62002e17565b600b0b670de0b6b3a764000003906b7fffffffffffffffffffffff1982126b7fffffffffffffffffffffff83131762000cb057565b90600f0b90600f0b03906f7fffffffffffffffffffffffffffffff82136f7fffffffffffffffffffffffffffffff1983121762000cb057565b9290919262002ed06002841462002c0f565b60208401516f7fffffffffffffffffffffffffffffff9190600f0b8203620033115760ff60005b1660008162003308575060ff60015b169062002f336001820160051b948062002f23878b0151600f0b90565b149081620032e9575b5062002c5c565b62002f55620006cb8362002f49368a8862002ca8565b9060010160051b015190565b6001600160a01b0330911614953062002f7d620006cb620006cb8562002f4936878b62002ca8565b149788978815809a620032e0575b62002f969062002cfd565b62002fa062002d49565b9862002fab62002d49565b9a80620032d7575b156200316d5750506001840160051b0194855188600082600f0b12600014620030aa575050506200306f856200308c846200307f876200309396620030786200309f9962002f496200305d620029449f62003016620030579151600f0b62002dd4565b620030506200304a62003044620030356003546001600160601b031690565b6001600160601b0316600b0b90565b62002e50565b600b0b90565b9062002e2d565b6200331b565b9d8e9a8b9662002f4936888562002ca8565b94369162002ca8565b90620033cb565b908b9060010160051b0152565b5162002e85565b6001830160051b880152565b60010160051b840152565b916200311b6200310f6200315495620029449a620031068962002f496200315a9b9d620030fd8e620031609f620031249c620030f091620031469f9060010160051b0152565b62002f4936898562002ca8565b95369162002ca8565b905191620033cb565b6001890160051b8c0152565b890151600f0b90565b6200313f6200304a620030356003546001600160601b031690565b9062002df2565b670de0b6b3a7640000900590565b600f0b90565b62002db2565b90859060010160051b0152565b9196509294919392901562003238575091620032228262002f49856200294498620032058960ff620031fc620031f6620031e3620031d5620027216200322b9f6200315a9f8f620031c59262002f4991369162002ca8565b6000526005602052604060002090565b9462002f49368e8b62002ca8565b60a01c6affffffffffffffffffffff1690565b62001e52565b91161462002d66565b6001840160051b9081018051918d0191909152945b369162002ca8565b90519062003970565b90849060010160051b0152565b909291901562002c1757620032c8620032c08562002f4986866200321a8d620032b8620029449d620032a68b60ff620032b89f620032cf9f620031e362003298620027218f620031c59062002f49620031fc97620031f697369162002ca8565b9462002f49368d8f62002ca8565b60018b0160051b01998a519262001c03565b90600f0b9052565b915162002db2565b9062003883565b918562001c03565b50811562002fb3565b50801562002f8b565b9050620032ff6001850160051b8a0151600f0b90565b14153862002f2c565b60ff9062002f06565b60ff600162002ef7565b9081600f0b9182036200332a57565b608460405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203160448201527f32382062697473000000000000000000000000000000000000000000000000006064820152fd5b9190916000838201938412911290801582169115161762000cb057565b8181039291600013801582851316918412161762000cb057565b620034379262003430620034946200348e6200344a62003430620034446200349a976200343d620033fc8b6200374b565b93919d909a6200340c836200374b565b9891929094600052600560205260ff60406000205460081c16600a0a90600f0b0290565b9062003394565b620036ce565b9262003394565b620033b1565b93670de0b6b3a7640000817f000000000000000000000000000000000000000000000000000000000000000060021b02050262003488858062002df2565b62003394565b6200367e565b620034cf565b6001810190600060018312911290801582169115161762000cb057620003e3926002620034c89205620033b1565b9062003859565b620034da8162003501565b906000908280021015620034ef575060010190565b60ff160190565b811562002e4a570490565b8015620036655780620035f5620035ed620035e1620035d5620035c9620035bd620035b1620035a56001620003e39a6000908b60801c8062003658575b508060401c806200364a575b508060201c806200363c575b508060101c806200362e575b508060081c8062003620575b508060041c8062003612575b508060021c8062003604575b50821c620035fc575b811c1b6200359e818b620034f6565b0160011c90565b6200359e818a620034f6565b6200359e8189620034f6565b6200359e8188620034f6565b6200359e8187620034f6565b6200359e8186620034f6565b6200359e8185620034f6565b8092620034f6565b906200366b565b81016200358f565b600291509101903862003586565b60049150910190386200357a565b60089150910190386200356e565b601091509101903862003562565b602091509101903862003556565b60409150910190386200354a565b915050608090386200353e565b50600090565b908082101562003679575090565b905090565b600081126200368a5790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b80156200372c5762003725816200371f620003e394670de0b6b3a7640000620037187f00000000000000000000000000000000000000000000000000000000000000008362002df2565b0562002df2565b62002e2d565b90620033b1565b506200023857600090565b8181029291811591840414171562000cb057565b9081600052600560205260ff60406000205460081c16604d811162000cb057600a0a6001600160801b039081620037b962000eb66200378a8762003827565b6000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b1682039180831162000cb0576200380d62000eb6620037dd84620038149662003737565b966000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b1662003737565b90620038218383620036ce565b91929190565b600052600560205260001960ff604060002054160160ff811162000cb05760a01b60ff60a01b163017600160f91b1790565b600052600560205260ff60406000205460081c16600a0a801562002e4a57620003e391056200331b565b620038ca620038c2926002620039006200389d856200374b565b959197909487600052600560205260ff60406000205460081c16600a0a90600f0b0290565b809462003394565b93670de0b6b3a764000080947f000000000000000000000000000000000000000000000000000000000000000002059062003394565b0590600160ff1b851462000cb057620034946200348e620034309262003430620034c896620039436200393b88620003e39c60000362003394565b978062002df2565b92620037187f00000000000000000000000000000000000000000000000000000000000000008362002df2565b6200343091620039a762003984836200374b565b95909385600052600560205260ff60406000205460081c16600a0a90600f0b0290565b927f000000000000000000000000000000000000000000000000000000000000000093670de0b6b3a7640000918286850205938460011b847f000000000000000000000000000000000000000000000000000000000000000085020501928760021b9460048605890362000cb05762003a5062003a63966200313f62003a5d956200343062003a699b62003a49886200313f6200348e9a620034449d620033b1565b9262002df2565b0562003444858062002df2565b62003501565b62002dd4565b8260011b92600284050362000cb057620003e392620034c89162002e2d565b1562003a9057565b606460405162461bcd60e51b815260206004820152600a60248201527f6f6e6c79207661756c74000000000000000000000000000000000000000000006044820152fd5b6020908181840312620002385780519067ffffffffffffffff82116200023857019180601f840112156200023857825162003b0f816200093e565b9362003b1f60405195866200091b565b818552838086019260051b82010192831162000238578301905b82821062003b48575050505090565b8151815290830190830162003b39565b1562003b6057565b606460405162461bcd60e51b815260206004820152600b60248201527f77726f6e672067617567650000000000000000000000000000000000000000006044820152fd5b909190801562003c475760018381161562003c325781935b811c805b62003bca57505050565b828002928084040362000238576b800000000000000000000000928381019081106200023857606090811c9383831662003c0a575b5050811c8062003bc0565b8487939702928584041415851515166200023857820191821062000238571c93388062003bff565b6c010000000000000000000000009362003bbc565b50901562003c5457600090565b6c010000000000000000000000009056fe610120604081815234620001f85760608262000f378038038091620000258285620001fd565b833981010312620001f85781516001600160a01b0380821690818303620001f8576020928484870151960151918216809203620001f8576080523360a0526000923084527f41cdc826884889a9d86ce2ed24c534af045774747691a4897641494ae5dd896b815284842060c0528451631c41328760e31b8152818160048188885af1918215620001ee578592620001b6575b505060e052813b15620001b2578291604483928651958693849263343e66c560e21b845230600485015260248401525af18015620001a65762000178575b505061010091825251610cff9182620002388339608051828181610446015281816107b00152610857015260a05182505060c0518281816104a3015281816105a70152610c60015260e051826108c601525181818160c8015281816104020152818161047f015281816105830152818161062f0152818161089d0152610c3c0152f35b6001600160401b03821162000192575081523880620000f5565b634e487b7160e01b81526041600452602490fd5b508251903d90823e3d90fd5b8280fd5b90809250813d8311620001e6575b620001d08183620001fd565b81010312620001e257513880620000b7565b8380fd5b503d620001c4565b86513d87823e3d90fd5b600080fd5b601f909101601f19168101906001600160401b038211908210176200022157604052565b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001257600080fd5b6000803560e01c908163165cad8d146100aa5750806319706b38146100a557806320e5fe3e146100a0578063282b4c861461009b5780633a4b66f114610096578063781c380014610091578063a5b39cfb1461008c578063cb629009146100875763ff7bd55b1461008257600080fd5b6105e7565b61056a565b610523565b610425565b6103ea565b6103bf565b610316565b61012a565b346100ec57806003193601126100ec578060206060925260016020527f0000000000000000000000000000000000000000000000000000000000000000604052f35b80fd5b6020908160408183019282815285518094520193019160005b828110610116575050505090565b835185529381019392810192600101610108565b34610195576000806003193601126100ec57604080519161014a836101c6565b808352815192839160208084528251928382860152825b84811061017f57505050828201840152601f01601f19168101030190f35b8181018301518882018801528795508201610161565b600080fd5b600435906001600160a01b038216820361019557565b634e487b7160e01b600052604160045260246000fd5b6020810190811067ffffffffffffffff8211176101e257604052565b6101b0565b90601f8019910116810190811067ffffffffffffffff8211176101e257604052565b67ffffffffffffffff81116101e25760051b60200190565b81601f820112156101955780359161023883610209565b9261024660405194856101e7565b808452602092838086019260051b820101928311610195578301905b828210610270575050505090565b813580600f0b8103610195578152908301908301610262565b9181601f840112156101955782359167ffffffffffffffff8311610195576020838186019501011161019557565b90815180825260208080930193019160005b8281106102d7575050505090565b8351600f0b855293810193928101926001016102c9565b9091610305610313936040845260408401906102b7565b9160208184039101526102b7565b90565b346101955760803660031901126101955761032f61019a565b6024359067ffffffffffffffff90818311610195573660238401121561019557826004013590828211610195573660248360051b860101116101955760443583811161019557610383903690600401610221565b92606435908111610195576103ab946103a26024923690600401610289565b50500190610844565b906103bb604051928392836102ee565b0390f35b346101955760203660031901126101955760206103e26103dd61019a565b610c34565b604051908152f35b346101955760003660031901126101955760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346101955760203660031901126101955760043561046d6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163314610716565b8061047457005b6104d86104d26104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b610777565b60801c90565b90811580156104e357005b61051e57633b9aca006fffffffffffffffffffffffffffffffff1991600054936001600160801b039283920204168184160116911617600055005b610761565b34610195576020366003190112610195576001600160a01b0361054461019a565b1660005260016020526001600160801b0360406000205416602060005260405260606000f35b34610195576000366003190112610195576105d16104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b60801c6020600052600160205260405260606000f35b34610195576000806003193601126100ec57604051907f4a3d6bda00000000000000000000000000000000000000000000000000000000825280826004816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa90811561070a57809161066d575b604051806103bb84826100ef565b90503d8082843e61067e81846101e7565b820160209283818303126107025780519067ffffffffffffffff8211610706570181601f82011215610702578051906106b682610209565b936106c460405195866101e7565b828552858086019360051b8301019384116100ec57508401905b8282106106f3575050506103bb91503861065f565b815181529084019084016106de565b8280fd5b8380fd5b604051903d90823e3d90fd5b1561071d57565b606460405162461bcd60e51b815260206004820152600a60248201527f6f6e6c79207661756c74000000000000000000000000000000000000000000006044820152fd5b634e487b7160e01b600052601260045260246000fd5b6000907f726561640000000000000000000000000000000000000000000000000000000082526004526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa156100ec575190565b906107e582610209565b6107f260405191826101e7565b8281528092610803601f1991610209565b0190602036910137565b634e487b7160e01b600052601160045260246000fd5b9190916000838201938412911290801582169115161761083f57565b61080d565b610a1c91949361087e6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163314610716565b610887846107db565b936109b96108eb610897836107db565b986108c37f00000000000000000000000000000000000000000000000000000000000000008583610b9b565b937f000000000000000000000000000000000000000000000000000000000000000091610b9b565b6109ac6109a361099d61099161097e61094461090f6000546001600160801b031690565b61093661092f8d6001600160a01b03166000526001602052604060002090565b5460801c90565b6001600160801b0391031690565b6109716109648c6001600160a01b03166000526001602052604060002090565b546001600160801b031690565b026001600160801b031690565b6001600160801b03633b9aca0091160490565b6001600160801b031690565b600f0b90565b600003600f0b90565b90879060010160051b0152565b60018101610a20575b50506109f36109d96000546001600160801b031690565b916001600160a01b03166000526001602052604060002090565b906001600160801b036fffffffffffffffffffffffffffffffff1983549260801b169116179055565b9190565b610ac791610ab9610a78610a73610a6e610a536109916109648a6001600160a01b03166000526001602052604060002090565b946001870160051b0194610a688651600f0b90565b90610823565b610b4c565b610ace565b610a95866001600160a01b03166000526001602052604060002090565b906001600160801b03166fffffffffffffffffffffffffffffffff19825416179055565b5190859060010160051b0152565b38806109c2565b6001600160801b0390818111610ae2571690565b608460405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203160448201527f32382062697473000000000000000000000000000000000000000000000000006064820152fd5b60008112610b575790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b90918215610c2b576000906000199384810190811161083f5793929193905b81851115610bca57505050905090565b6001858303811c860180968160051b860135848114600014610bf157505050505050505090565b87985093809596979192939410600014610c12575050015b93929190610bba565b925093508015610c23570191610c09565b505050505090565b50505060001990565b610c8a6104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b60801c908115610cc2576001600160a01b03166000526001602052670de0b6b3a76400006001600160801b0360406000205416020490565b505060009056fea2646970667358221220c847baff786bb5c34800a44454d37ca103526e58540cc639dfa12e82f324da3b64736f6c63430008130033a2646970667358221220d1f5066b3ef1cfef60f693b83bcc4855b3b21ad7c927f8ecc61ab68d9e4ba23f64736f6c63430008130033000000000000000000000000111a6d7f5ddb85776f1b6a6deabe552815559f9e0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc75350000000000000000000000000000000000000000000000000001c6bf52634000000000000000000000000000000000000000000000000000000470de4df82000
Deployed Bytecode
0x608060405260043610156200001357600080fd5b60003560e01c8062fdd58e146200022057806301ffc9a7146200021a57806303565ea114620002145780630b1150de146200020e5780630e89341c146200020857806319706b3814620002025780631fe8df1014620001fc57806321ee6d9e14620001f6578063273cbaa014620001f05780632eb2c2d614620001ea57806334c0b46b14620001e4578063376fc5bf14620001de5780634a3d6bda14620001d85780634e1273f414620001d25780636b35b93d14620001cc57806388c0b95714620001c65780639a552a2914620001c05780639acaa0f414620001ba5780639ead722214620001b4578063a22cb46514620001ae578063a9c1f2f114620001a8578063ae275dce14620001a2578063bd85b039146200019c578063ce98f8aa1462000196578063dc6913331462000190578063e985e9c5146200018a578063ec3788081462000184578063f242432a146200017e5763f38a02d0146200017857600080fd5b62001a6f565b620018c0565b6200180a565b620016ce565b6200168e565b620015d0565b620014c8565b62001488565b62001438565b62001321565b620012c2565b62001173565b62001153565b62001119565b620010b9565b62000fe9565b62000f55565b62000d3f565b62000c2c565b62000a19565b62000816565b620007ed565b6200068a565b62000608565b620004e7565b620003e6565b6200034b565b62000289565b6200023d565b6001600160a01b038116036200023857565b600080fd5b3462000238576040366003190112620002385760206200026e600435620002648162000226565b6024359062001ad3565b604051908152f35b6001600160e01b03198116036200023857565b3462000238576020366003190112620002385760206001600160e01b0319600435620002b58162000276565b167fd9b67a2600000000000000000000000000000000000000000000000000000000811490811562000320575b8115620002f5575b506040519015158152f35b7f01ffc9a70000000000000000000000000000000000000000000000000000000091501438620002ea565b7f0e89341c0000000000000000000000000000000000000000000000000000000081149150620002e2565b34620002385760203660031901126200023857600435600052600560205260606040600020546001600160a01b036040519160ff8116835260ff8160081c16602084015260101c166040820152f35b90815180825260208080930193019160005b828110620003bb575050505090565b835185529381019392810192600101620003ac565b906020620003e39281815201906200039a565b90565b346200023857602036600319011262000238576004356affffffffffffffffffffff8160a01c166004548110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0154906200044c8262003827565b036200023857620004889060046000526200046662001b7b565b90620004728262001bf5565b526040519182916020835260208301906200039a565b0390f35b62001274565b919082519283825260005b848110620004bf575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016200049d565b906020620003e392818152019062000492565b34620002385760208060031936011262000238576040519060009060025460019181831c92808316928315620005f1575b8285108414620005dd578487526020870193908115620005bb57506001146200055c575b62000488866200054f818803826200091b565b60405191829182620004d4565b6002600090815294509192917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b838610620005a957505050910190506200054f8262000488386200053c565b8054858701529482019481016200058a565b60ff1916845250505090151560051b0190506200054f8262000488386200053c565b602486634e487b7160e01b81526022600452fd5b93607f169362000518565b60009103126200023857565b34620002385760003660031901126200023857620004886001600160601b03600354166040519060208201527f000000000000000000000000000000000000000000000000000470de4df820006040820152604081526200066981620008e1565b60405191829160208352602083019062000492565b60ff8116036200023857565b3462000238576040366003190112620002385762000781602435620006af816200067e565b6020620006d7620006cb620006cb620006cb620006cb620024e3565b6001600160a01b031690565b6040517f000000000000000000000000111a6d7f5ddb85776f1b6a6deabe552815559f9e6001600160a01b03168382019081526000356001600160e01b03191660208201529062000735816024840103601f1981018352826200091b565b5190206040517f9be2a884000000000000000000000000000000000000000000000000000000008152600481019190915233602482015230604482015293849190829081906064820190565b03915afa918215620007e757620007b092620007a791600091620007b2575b5062002437565b60043562002702565b005b620007d8915060203d8111620007df575b620007cf81836200091b565b8101906200241f565b38620007a0565b503d620007c3565b62001fa9565b3462000238576000366003190112620002385760206001600160601b0360035416604051908152f35b346200023857600080600319360112620008ad5760048054906200083a8262001b97565b90835b82518110156200089557838110156200048c576200088f90828652807f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b015462000888828662001c03565b5262001be5565b6200083d565b6040516020808252819062000488908201866200039a565b80fd5b634e487b7160e01b600052604160045260246000fd5b67ffffffffffffffff8111620008db57604052565b620008b0565b6060810190811067ffffffffffffffff821117620008db57604052565b6040810190811067ffffffffffffffff821117620008db57604052565b90601f8019910116810190811067ffffffffffffffff821117620008db57604052565b67ffffffffffffffff8111620008db5760051b60200190565b81601f82011215620002385780359162000971836200093e565b926200098160405194856200091b565b808452602092838086019260051b82010192831162000238578301905b828210620009ad575050505090565b813581529083019083016200099e565b81601f82011215620002385780359067ffffffffffffffff8211620008db5760405192620009f6601f8401601f1916602001856200091b565b828452602083830101116200023857816000926020809301838601378301015290565b34620002385760a0366003190112620002385760043562000a3a8162000226565b6024359062000a498262000226565b67ffffffffffffffff90604435828111620002385762000a6e90369060040162000957565b91606435818111620002385762000a8a90369060040162000957565b90608435908111620002385762000aa6903690600401620009bd565b926001600160a01b039384841694338614801562000bf0575b62000aca9062001cfc565b62000ad9835185511462001e84565b861662000ae881151562001d6e565b60005b835181101562000ba8578062000b0662000ba2928662001c03565b5162000b9a62000b918b62000b4262000b20868c62001c03565b51948c62000b808762000b5a8362000b42866000526000602052604060002090565b906001600160a01b0316600052602052604060002090565b5462000b698282101562001de0565b039162000b42846000526000602052604060002090565b556000526000602052604060002090565b91825462001e76565b905562001be5565b62000aeb565b5093869194620007b0966040517f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb33918062000be68a8a8362001ef6565b0390a4336200238a565b5085600052600160205262000aca60ff62000c22336040600020906001600160a01b0316600052602052604060002090565b5416905062000abf565b3462000238576000366003190112620002385760045462000c4d8162001b97565b60005b6affffffffffffffffffffff811683811015620008955762000c8f600160f91b306affffffffffffffffffffff60a01b8560a01b161717918462001c03565b526affffffffffffffffffffff80911690811462000cb05760010162000c50565b62001bcf565b90815180825260208080930193019160005b82811062000cd7575050505090565b8351600f0b8552938101939281019260010162000cc8565b9262000d21620003e3959362000d1262000d30946080885260808801906200039a565b90868203602088015262000cb6565b90848203604086015262000cb6565b91606081840391015262000cb6565b3462000238576040366003190112620002385760043562000d608162000226565b6001600160a01b03809162000d99827f0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc753516331462003a88565b166040519063165cad8d60e01b8252600082600481845afa8015620007e75762000df862000df262000dde62000e029362000e349660009162000f2f575b5062001bf5565b5160a01c6affffffffffffffffffffff1690565b6200128a565b90549060031b1c90565b9262000e2c62000e1c856000526005602052604060002090565b5460101c6001600160a01b031690565b161462003b58565b62000ece62000ec862000e7a62000e7460243562000e6e62000e626003546001600160601b039060601c1690565b6001600160601b031690565b62003ba4565b62002403565b62000ec262000ebc62000eb6866000527f652d2398f2f3c0e6e3a57c9caf46264db6640ccf353999ee84138cd825221115602052604060002090565b6200254f565b60801c90565b62003737565b60601c90565b9062000ed962001b7b565b9062000ee58262001bf5565b526200048862000ef462001b7b565b9262000eff62001b7b565b62000f2262000f1b62000f1162001b7b565b93600f0b62002db2565b8660200152565b6040519485948562000cef565b62000f4e913d8091833e62000f4581836200091b565b81019062003ad4565b3862000dd7565b346200023857600036600319011262000238576040518060045480825282602080930160046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b9260005b8582821062000fd25750505062000fbc925003836200091b565b620004886040519282849384528301906200039a565b855484526001958601958895509301920162000fa2565b3462000238576040366003190112620002385760043567ffffffffffffffff808211620002385736602383011215620002385781600401356200102c816200093e565b926200103c60405194856200091b565b81845260209160248386019160051b830101913683116200023857602401905b8282106200109d578560243586811162000238576200048891620010896200109092369060040162000957565b9062001c18565b60405191829182620003d0565b8380918335620010ad8162000226565b8152019101906200105c565b34620002385760003660031901126200023857620011026001600160a01b037f0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc753516331462003a88565b600380546bffffffffffffffffffffffff19169055005b34620002385760203660031901126200023857600435600052600560205260206001600160a01b0360406000205460101c16604051908152f35b346200023857600036600319011262000238576020600454604051908152f35b34620002385760203660031901126200023857600435620011948162000226565b6001600160a01b038091169060405163165cad8d60e01b8152600081600481865afa928315620007e75762000e0262000df862000df262000dde6200048897620011e79660009162000f2f575062001bf5565b6200125b62000ec86200123562000ebc62000eb66200120562001b7b565b956000527f652d2398f2f3c0e6e3a57c9caf46264db6640ccf353999ee84138cd825221115602052604060002090565b6200125462000e7462000e626003546001600160601b039060601c1690565b9062003737565b620012668262001bf5565b5260405191829182620003d0565b634e487b7160e01b600052603260045260246000fd5b6004548110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0190600090565b34620002385760203660031901126200023857600435600454811015620002385760209060046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0154604051908152f35b801515036200023857565b34620002385760403660031901126200023857600435620013428162000226565b602435620013508162001316565b6001600160a01b03821691823314620013ce57816200138b6200139c9262000b42336001600160a01b03166000526001602052604060002090565b9060ff801983541691151516179055565b604051901515815233907f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3190602090a3005b608460405162461bcd60e51b815260206004820152602960248201527f455243313135353a2073657474696e6720617070726f76616c2073746174757360448201527f20666f722073656c6600000000000000000000000000000000000000000000006064820152fd5b3462000238576000366003190112620002385760206001600160601b0360035460601c16604051908152f35b602090600319011262000238576004356001600160601b0381168103620002385790565b3462000238576200149d620006af3662001464565b03915afa918215620007e757620007b092620014c291600091620007b2575062002437565b6200248b565b346200023857602036600319011262000238576004356affffffffffffffffffffff81116200156657600160f91b906200155062000eb66001600160801b039384936affffffffffffffffffffff60a01b309160a01b1617176000527f652d2398f2f3c0e6e3a57c9caf46264db6640ccf353999ee84138cd825221115602052604060002090565b16810390811162000cb057604051908152602090f35b608460405162461bcd60e51b815260206004820152602660248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203860448201527f38206269747300000000000000000000000000000000000000000000000000006064820152fd5b34620002385760203660031901126200023857600435620015f18162000226565b6001600160a01b038091169060405163165cad8d60e01b8152600081600481865afa908115620007e75760009162001671575b508051156200048c57620004889262000e0262000df862000df260206200165b9501516affffffffffffffffffffff9060a01c1690565b6200166562001b7b565b90620012668262001bf5565b62001687913d8091833e62000f4581836200091b565b3862001624565b346200023857620016a3620006af3662001464565b03915afa918215620007e757620007b092620016c891600091620007b2575062002437565b6200259b565b34620002385760403660031901126200023857602060ff62001733600435620016f78162000226565b6001600160a01b03602435916200170e8362000226565b16600052600184526040600020906001600160a01b0316600052602052604060002090565b54166040519015158152f35b81601f82011215620002385780359162001759836200093e565b926200176960405194856200091b565b808452602092838086019260051b82010192831162000238578301905b82821062001795575050505090565b813580600f0b81036200023857815290830190830162001786565b9181601f84011215620002385782359167ffffffffffffffff83116200023857602083818601950101116200023857565b9091620017fb620003e39360408452604084019062000cb6565b91602081840391015262000cb6565b346200023857608036600319011262000238576200182a60043562000226565b60243567ffffffffffffffff8082116200023857366023830112156200023857816004013581811162000238573660248260051b8501011162000238576044358281116200023857620018829036906004016200173f565b916064359081116200023857620018ae93620018a56024923690600401620017b0565b50500162002ebe565b906200048860405192839283620017e1565b34620002385760a03660031901126200023857600435620018e18162000226565b602435620018ef8162000226565b6084359060643560443567ffffffffffffffff841162000238576200191d62001a30943690600401620009bd565b926001600160a01b039586811696338814801562001a33575b620019419062001cfc565b82166200195081151562001d6e565b6200195b84620023e8565b506200196785620023e8565b506000978489528860205285620019948460408c20906001600160a01b0316600052602052604060002090565b54620019a38282101562001de0565b868b528a60205203620019cc8460408c20906001600160a01b0316600052602052604060002090565b55620019e78462000b42876000526000602052604060002090565b620019f487825462001e76565b9055604080518681526020810188905233917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291a4336200220c565b80f35b508760005260016020526200194160ff62001a65336040600020906001600160a01b0316600052602052604060002090565b5416905062001936565b346200023857600036600319011262000238576200048860405162001a9481620008fe565b600681527f776f6d6261740000000000000000000000000000000000000000000000000000602082015260405191829160208352602083019062000492565b6001600160a01b0381161562001b115762001b0d9160005260006020526040600020906001600160a01b0316600052602052604060002090565b5490565b608460405162461bcd60e51b815260206004820152602a60248201527f455243313135353a2061646472657373207a65726f206973206e6f742061207660448201527f616c6964206f776e6572000000000000000000000000000000000000000000006064820152fd5b6040519062001b8a82620008fe565b6001825260203681840137565b9062001ba3826200093e565b62001bb260405191826200091b565b828152809262001bc5601f19916200093e565b0190602036910137565b634e487b7160e01b600052601160045260246000fd5b600019811462000cb05760010190565b8051156200048c5760200190565b80518210156200048c5760209160051b010190565b919091805183510362001c925762001c31815162001b97565b9060005b815181101562001c8b578062001c7962001c6562001c5862001c85948662001c03565b516001600160a01b031690565b62001c71838962001c03565b519062001ad3565b62000888828662001c03565b62001c35565b5090925050565b608460405162461bcd60e51b815260206004820152602960248201527f455243313135353a206163636f756e747320616e6420696473206c656e67746860448201527f206d69736d6174636800000000000000000000000000000000000000000000006064820152fd5b1562001d0457565b608460405162461bcd60e51b815260206004820152602e60248201527f455243313135353a2063616c6c6572206973206e6f7420746f6b656e206f776e60448201527f6572206f7220617070726f7665640000000000000000000000000000000000006064820152fd5b1562001d7657565b608460405162461bcd60e51b815260206004820152602560248201527f455243313135353a207472616e7366657220746f20746865207a65726f20616460448201527f64726573730000000000000000000000000000000000000000000000000000006064820152fd5b1562001de857565b608460405162461bcd60e51b815260206004820152602a60248201527f455243313135353a20696e73756666696369656e742062616c616e636520666f60448201527f72207472616e73666572000000000000000000000000000000000000000000006064820152fd5b906001820180921162000cb057565b906001600160801b03820180921162000cb057565b9190820180921162000cb057565b1562001e8c57565b608460405162461bcd60e51b815260206004820152602860248201527f455243313135353a2069647320616e6420616d6f756e7473206c656e6774682060448201527f6d69736d617463680000000000000000000000000000000000000000000000006064820152fd5b909162001f10620003e3936040845260408401906200039a565b9160208184039101526200039a565b90816020910312620002385751620003e38162000276565b620003e393926001600160a01b0360a0931682526000602083015260408201526001600160801b036060820152816080820152019062000492565b9192620003e395949160a0946001600160a01b03809216855216602084015260408301526060820152816080820152019062000492565b6040513d6000823e3d90fd5b60009060033d1162001fc357565b905060046000803e60005160e01c90565b600060443d10620003e357604051600319913d83016004833e815167ffffffffffffffff918282113d602484011117620020385781840194855193841162002040573d85010160208487010111620020385750620003e3929101602001906200091b565b949350505050565b50949350505050565b92919091823b6200205b575b50505050565b6200208c9260209260006001600160a01b0360405180978196829563f23a6e6160e01b9b8c85526004850162001f37565b0393165af160009181620021d5575b506200216f5750506001620020af62001fb5565b6308c379a0146200213a575b620020cb575b3880808062002055565b60405162461bcd60e51b815260206004820152603460248201527f455243313135353a207472616e7366657220746f206e6f6e2d4552433131353560448201527f526563656976657220696d706c656d656e7465720000000000000000000000006064820152608490fd5b0390fd5b6200214462001fd4565b80620021515750620020bb565b620021369060405191829162461bcd60e51b835260048301620004d4565b6001600160e01b03191614620020c15760405162461bcd60e51b815260206004820152602860248201527f455243313135353a204552433131353552656365697665722072656a656374656044820152676420746f6b656e7360c01b6064820152608490fd5b620021fc91925060203d811162002204575b620021f381836200091b565b81019062001f1f565b90386200209b565b503d620021e7565b9493919092813b62002221575b505050505050565b60006001600160a01b03602095620022526040519889978896879463f23a6e6160e01b9d8e87526004870162001f72565b0393165af16000918162002310575b50620022aa57505060016200227562001fb5565b6308c379a01462002293575b620020cb575b38808080808062002219565b6200229d62001fd4565b8062002151575062002281565b6001600160e01b03191614620022875760405162461bcd60e51b815260206004820152602860248201527f455243313135353a204552433131353552656365697665722072656a656374656044820152676420746f6b656e7360c01b6064820152608490fd5b6200232d91925060203d81116200220457620021f381836200091b565b903862002261565b9390620003e395936200236c916200237b946001600160a01b03809216885216602087015260a0604087015260a08601906200039a565b9084820360608601526200039a565b91608081840391015262000492565b9493919092813b6200239e57505050505050565b60006001600160a01b0360209562002252604051988997889687947fbc197c81000000000000000000000000000000000000000000000000000000009d8e87526004870162002335565b620023f262001b7b565b908151156200048c57602082015290565b906c0100000000000000000000000091820391821162000cb057565b90816020910312620002385751620003e38162001316565b156200243f57565b606460405162461bcd60e51b815260206004820152600c60248201527f756e617574686f72697a656400000000000000000000000000000000000000006044820152fd5b156200023857565b6001600160601b031667016345785d8a0000811162000238576020817f6bbc57480a46553fa4d156ce702beef5f3ad66303b0ed1a5d4cb44966c6584c3926001600160601b03196003541617600355604051908152a1565b6000631c99585960e21b81527f0ebf818546cf436ba3e823ca878b84c3d55a00f566d51f4b07ec1ab90533db4e6004526020816024816001600160a01b037f0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc7535165afa15620008ad575190565b600090631c99585960e21b82526004526020816024816001600160a01b037f0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc7535165afa15620008ad575190565b60207f78e0b45656b8fb6065c79a36aeaf92fbf473dc06966bb96e5fe995247e887503917fffffffffffffffff000000000000000000000000ffffffffffffffffffffffff77ffffffffffffffffffffffff0000000000000000000000006003549260601b16911617806003556001600160601b036040519160601c168152a1565b156200262557565b606460405162461bcd60e51b815260206004820152600d60248201527f616c7265616479206164646564000000000000000000000000000000000000006044820152fd5b60045468010000000000000000811015620008db5760018101806004558110156200048c5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0155565b60ff60019116019060ff821162000cb057565b60ff166012039060ff821162000cb057565b604051906020820182811067ffffffffffffffff821117620008db5760405260008252565b6200273060ff6200272862002721846000526005602052604060002090565b5460ff1690565b16156200261d565b6200273d60045462002a8d565b91620027498262002669565b6200277c6200275884620026b8565b6200276d846000526005602052604060002090565b9060ff1660ff19825416179055565b60ff81811603620029645750620027cc620027a16200279b8362002b1e565b620026cb565b620027b6836000526005602052604060002090565b9061ff0082549160081b169061ff001916179055565b7f0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc7535916001600160a01b0392600160f91b84821692620028196200280e620026dd565b60ff83168662002973565b60a01b60ff60a01b1630171791803b1562000238576040517fd2441f03000000000000000000000000000000000000000000000000000000008152600481018490526000602482018190526001600160801b03604483015290918290606490829084905af18015620007e75762002946575b5060405191610f37908184019084821067ffffffffffffffff831117620008db578493620028d59362003c6686396001600160a01b03168252602082015230604082015260600190565b03906000f08015620007e7576200294492620028fd9116916000526005602052604060002090565b907fffffffffffffffffffff0000000000000000000000000000000000000000ffff75ffffffffffffffffffffffffffffffffffffffff000083549260101b169116179055565b565b80620029566200295d92620008c6565b80620005fc565b386200288b565b620027a1620027cc91620026cb565b91906001600160a01b03831692831562002a23576200299282620023e8565b506200299d62001b7b565b938451156200048c576001600160801b03602062002944960152620029d18262000b42856000526000602052604060002090565b620029dd815462001e61565b9055604080518481526001600160801b03602082015260009133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629190a43362002049565b608460405162461bcd60e51b815260206004820152602160248201527f455243313135353a206d696e7420746f20746865207a65726f2061646472657360448201527f73000000000000000000000000000000000000000000000000000000000000006064820152fd5b60ff811162002a9c5760ff1690565b608460405162461bcd60e51b815260206004820152602560248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203860448201527f20626974730000000000000000000000000000000000000000000000000000006064820152fd5b90816020910312620002385751620003e3816200067e565b7fff00000000000000000000000000000000000000000000000000000000000000811662002bde5760208162002b6d6affffffffffffffffffffff6001600160a01b039460a01c161562002483565b6004604051809481937f313ce567000000000000000000000000000000000000000000000000000000008352165afa908115620007e75760009162002bb0575090565b620003e3915060203d811162002bd6575b62002bcd81836200091b565b81019062002b06565b503d62002bc1565b7feeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee1462002c0a57600090565b601290565b1562002c1757565b60405162461bcd60e51b815260206004820152601560248201527f756e737570706f72746564206f7065726174696f6e00000000000000000000006044820152606490fd5b1562002c6457565b606460405162461bcd60e51b815260206004820152601560248201527f6e6f20756e6b6e6f776e73206f72206b6e6f776e7300000000000000000000006044820152fd5b929162002cb5826200093e565b9162002cc560405193846200091b565b829481845260208094019160051b81019283116200023857905b82821062002ced5750505050565b8135815290830190830162002cdf565b1562002d0557565b606460405162461bcd60e51b815260206004820152601c60248201527f63616e27742073776170206265747765656e204c5020746f6b656e73000000006044820152fd5b6040519062002d5882620008e1565b600282526040366020840137565b1562002d6e57565b606460405162461bcd60e51b815260206004820152600e60248201527f77726f6e67206c7020746f6b656e0000000000000000000000000000000000006044820152fd5b600f0b6f7fffffffffffffffffffffffffffffff19811462000cb05760000390565b90670de0b6b3a76400009182810292818405149015171562000cb057565b818102929160008212600160ff1b82141662000cb057818405149015171562000cb057565b634e487b7160e01b600052601260045260246000fd5b811562002e4a57600160ff1b811460001983141662000cb0570590565b62002e17565b600b0b670de0b6b3a764000003906b7fffffffffffffffffffffff1982126b7fffffffffffffffffffffff83131762000cb057565b90600f0b90600f0b03906f7fffffffffffffffffffffffffffffff82136f7fffffffffffffffffffffffffffffff1983121762000cb057565b9290919262002ed06002841462002c0f565b60208401516f7fffffffffffffffffffffffffffffff9190600f0b8203620033115760ff60005b1660008162003308575060ff60015b169062002f336001820160051b948062002f23878b0151600f0b90565b149081620032e9575b5062002c5c565b62002f55620006cb8362002f49368a8862002ca8565b9060010160051b015190565b6001600160a01b0330911614953062002f7d620006cb620006cb8562002f4936878b62002ca8565b149788978815809a620032e0575b62002f969062002cfd565b62002fa062002d49565b9862002fab62002d49565b9a80620032d7575b156200316d5750506001840160051b0194855188600082600f0b12600014620030aa575050506200306f856200308c846200307f876200309396620030786200309f9962002f496200305d620029449f62003016620030579151600f0b62002dd4565b620030506200304a62003044620030356003546001600160601b031690565b6001600160601b0316600b0b90565b62002e50565b600b0b90565b9062002e2d565b6200331b565b9d8e9a8b9662002f4936888562002ca8565b94369162002ca8565b90620033cb565b908b9060010160051b0152565b5162002e85565b6001830160051b880152565b60010160051b840152565b916200311b6200310f6200315495620029449a620031068962002f496200315a9b9d620030fd8e620031609f620031249c620030f091620031469f9060010160051b0152565b62002f4936898562002ca8565b95369162002ca8565b905191620033cb565b6001890160051b8c0152565b890151600f0b90565b6200313f6200304a620030356003546001600160601b031690565b9062002df2565b670de0b6b3a7640000900590565b600f0b90565b62002db2565b90859060010160051b0152565b9196509294919392901562003238575091620032228262002f49856200294498620032058960ff620031fc620031f6620031e3620031d5620027216200322b9f6200315a9f8f620031c59262002f4991369162002ca8565b6000526005602052604060002090565b9462002f49368e8b62002ca8565b60a01c6affffffffffffffffffffff1690565b62001e52565b91161462002d66565b6001840160051b9081018051918d0191909152945b369162002ca8565b90519062003970565b90849060010160051b0152565b909291901562002c1757620032c8620032c08562002f4986866200321a8d620032b8620029449d620032a68b60ff620032b89f620032cf9f620031e362003298620027218f620031c59062002f49620031fc97620031f697369162002ca8565b9462002f49368d8f62002ca8565b60018b0160051b01998a519262001c03565b90600f0b9052565b915162002db2565b9062003883565b918562001c03565b50811562002fb3565b50801562002f8b565b9050620032ff6001850160051b8a0151600f0b90565b14153862002f2c565b60ff9062002f06565b60ff600162002ef7565b9081600f0b9182036200332a57565b608460405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203160448201527f32382062697473000000000000000000000000000000000000000000000000006064820152fd5b9190916000838201938412911290801582169115161762000cb057565b8181039291600013801582851316918412161762000cb057565b620034379262003430620034946200348e6200344a62003430620034446200349a976200343d620033fc8b6200374b565b93919d909a6200340c836200374b565b9891929094600052600560205260ff60406000205460081c16600a0a90600f0b0290565b9062003394565b620036ce565b9262003394565b620033b1565b93670de0b6b3a7640000817f000000000000000000000000000000000000000000000000000470de4df8200060021b02050262003488858062002df2565b62003394565b6200367e565b620034cf565b6001810190600060018312911290801582169115161762000cb057620003e3926002620034c89205620033b1565b9062003859565b620034da8162003501565b906000908280021015620034ef575060010190565b60ff160190565b811562002e4a570490565b8015620036655780620035f5620035ed620035e1620035d5620035c9620035bd620035b1620035a56001620003e39a6000908b60801c8062003658575b508060401c806200364a575b508060201c806200363c575b508060101c806200362e575b508060081c8062003620575b508060041c8062003612575b508060021c8062003604575b50821c620035fc575b811c1b6200359e818b620034f6565b0160011c90565b6200359e818a620034f6565b6200359e8189620034f6565b6200359e8188620034f6565b6200359e8187620034f6565b6200359e8186620034f6565b6200359e8185620034f6565b8092620034f6565b906200366b565b81016200358f565b600291509101903862003586565b60049150910190386200357a565b60089150910190386200356e565b601091509101903862003562565b602091509101903862003556565b60409150910190386200354a565b915050608090386200353e565b50600090565b908082101562003679575090565b905090565b600081126200368a5790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b80156200372c5762003725816200371f620003e394670de0b6b3a7640000620037187f000000000000000000000000000000000000000000000000000470de4df820008362002df2565b0562002df2565b62002e2d565b90620033b1565b506200023857600090565b8181029291811591840414171562000cb057565b9081600052600560205260ff60406000205460081c16604d811162000cb057600a0a6001600160801b039081620037b962000eb66200378a8762003827565b6000527f652d2398f2f3c0e6e3a57c9caf46264db6640ccf353999ee84138cd825221115602052604060002090565b1682039180831162000cb0576200380d62000eb6620037dd84620038149662003737565b966000527f652d2398f2f3c0e6e3a57c9caf46264db6640ccf353999ee84138cd825221115602052604060002090565b1662003737565b90620038218383620036ce565b91929190565b600052600560205260001960ff604060002054160160ff811162000cb05760a01b60ff60a01b163017600160f91b1790565b600052600560205260ff60406000205460081c16600a0a801562002e4a57620003e391056200331b565b620038ca620038c2926002620039006200389d856200374b565b959197909487600052600560205260ff60406000205460081c16600a0a90600f0b0290565b809462003394565b93670de0b6b3a764000080947f0000000000000000000000000000000000000000000000000ddc45d5596be00002059062003394565b0590600160ff1b851462000cb057620034946200348e620034309262003430620034c896620039436200393b88620003e39c60000362003394565b978062002df2565b92620037187f000000000000000000000000000000000000000000000000000470de4df820008362002df2565b6200343091620039a762003984836200374b565b95909385600052600560205260ff60406000205460081c16600a0a90600f0b0290565b927f000000000000000000000000000000000000000000000000000470de4df8200093670de0b6b3a7640000918286850205938460011b847f0000000000000000000000000000000000000000000000000ddc45d5596be00085020501928760021b9460048605890362000cb05762003a5062003a63966200313f62003a5d956200343062003a699b62003a49886200313f6200348e9a620034449d620033b1565b9262002df2565b0562003444858062002df2565b62003501565b62002dd4565b8260011b92600284050362000cb057620003e392620034c89162002e2d565b1562003a9057565b606460405162461bcd60e51b815260206004820152600a60248201527f6f6e6c79207661756c74000000000000000000000000000000000000000000006044820152fd5b6020908181840312620002385780519067ffffffffffffffff82116200023857019180601f840112156200023857825162003b0f816200093e565b9362003b1f60405195866200091b565b818552838086019260051b82010192831162000238578301905b82821062003b48575050505090565b8151815290830190830162003b39565b1562003b6057565b606460405162461bcd60e51b815260206004820152600b60248201527f77726f6e672067617567650000000000000000000000000000000000000000006044820152fd5b909190801562003c475760018381161562003c325781935b811c805b62003bca57505050565b828002928084040362000238576b800000000000000000000000928381019081106200023857606090811c9383831662003c0a575b5050811c8062003bc0565b8487939702928584041415851515166200023857820191821062000238571c93388062003bff565b6c010000000000000000000000009362003bbc565b50901562003c5457600090565b6c010000000000000000000000009056fe610120604081815234620001f85760608262000f378038038091620000258285620001fd565b833981010312620001f85781516001600160a01b0380821690818303620001f8576020928484870151960151918216809203620001f8576080523360a0526000923084527f41cdc826884889a9d86ce2ed24c534af045774747691a4897641494ae5dd896b815284842060c0528451631c41328760e31b8152818160048188885af1918215620001ee578592620001b6575b505060e052813b15620001b2578291604483928651958693849263343e66c560e21b845230600485015260248401525af18015620001a65762000178575b505061010091825251610cff9182620002388339608051828181610446015281816107b00152610857015260a05182505060c0518281816104a3015281816105a70152610c60015260e051826108c601525181818160c8015281816104020152818161047f015281816105830152818161062f0152818161089d0152610c3c0152f35b6001600160401b03821162000192575081523880620000f5565b634e487b7160e01b81526041600452602490fd5b508251903d90823e3d90fd5b8280fd5b90809250813d8311620001e6575b620001d08183620001fd565b81010312620001e257513880620000b7565b8380fd5b503d620001c4565b86513d87823e3d90fd5b600080fd5b601f909101601f19168101906001600160401b038211908210176200022157604052565b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001257600080fd5b6000803560e01c908163165cad8d146100aa5750806319706b38146100a557806320e5fe3e146100a0578063282b4c861461009b5780633a4b66f114610096578063781c380014610091578063a5b39cfb1461008c578063cb629009146100875763ff7bd55b1461008257600080fd5b6105e7565b61056a565b610523565b610425565b6103ea565b6103bf565b610316565b61012a565b346100ec57806003193601126100ec578060206060925260016020527f0000000000000000000000000000000000000000000000000000000000000000604052f35b80fd5b6020908160408183019282815285518094520193019160005b828110610116575050505090565b835185529381019392810192600101610108565b34610195576000806003193601126100ec57604080519161014a836101c6565b808352815192839160208084528251928382860152825b84811061017f57505050828201840152601f01601f19168101030190f35b8181018301518882018801528795508201610161565b600080fd5b600435906001600160a01b038216820361019557565b634e487b7160e01b600052604160045260246000fd5b6020810190811067ffffffffffffffff8211176101e257604052565b6101b0565b90601f8019910116810190811067ffffffffffffffff8211176101e257604052565b67ffffffffffffffff81116101e25760051b60200190565b81601f820112156101955780359161023883610209565b9261024660405194856101e7565b808452602092838086019260051b820101928311610195578301905b828210610270575050505090565b813580600f0b8103610195578152908301908301610262565b9181601f840112156101955782359167ffffffffffffffff8311610195576020838186019501011161019557565b90815180825260208080930193019160005b8281106102d7575050505090565b8351600f0b855293810193928101926001016102c9565b9091610305610313936040845260408401906102b7565b9160208184039101526102b7565b90565b346101955760803660031901126101955761032f61019a565b6024359067ffffffffffffffff90818311610195573660238401121561019557826004013590828211610195573660248360051b860101116101955760443583811161019557610383903690600401610221565b92606435908111610195576103ab946103a26024923690600401610289565b50500190610844565b906103bb604051928392836102ee565b0390f35b346101955760203660031901126101955760206103e26103dd61019a565b610c34565b604051908152f35b346101955760003660031901126101955760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346101955760203660031901126101955760043561046d6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163314610716565b8061047457005b6104d86104d26104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b610777565b60801c90565b90811580156104e357005b61051e57633b9aca006fffffffffffffffffffffffffffffffff1991600054936001600160801b039283920204168184160116911617600055005b610761565b34610195576020366003190112610195576001600160a01b0361054461019a565b1660005260016020526001600160801b0360406000205416602060005260405260606000f35b34610195576000366003190112610195576105d16104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b60801c6020600052600160205260405260606000f35b34610195576000806003193601126100ec57604051907f4a3d6bda00000000000000000000000000000000000000000000000000000000825280826004816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa90811561070a57809161066d575b604051806103bb84826100ef565b90503d8082843e61067e81846101e7565b820160209283818303126107025780519067ffffffffffffffff8211610706570181601f82011215610702578051906106b682610209565b936106c460405195866101e7565b828552858086019360051b8301019384116100ec57508401905b8282106106f3575050506103bb91503861065f565b815181529084019084016106de565b8280fd5b8380fd5b604051903d90823e3d90fd5b1561071d57565b606460405162461bcd60e51b815260206004820152600a60248201527f6f6e6c79207661756c74000000000000000000000000000000000000000000006044820152fd5b634e487b7160e01b600052601260045260246000fd5b6000907f726561640000000000000000000000000000000000000000000000000000000082526004526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa156100ec575190565b906107e582610209565b6107f260405191826101e7565b8281528092610803601f1991610209565b0190602036910137565b634e487b7160e01b600052601160045260246000fd5b9190916000838201938412911290801582169115161761083f57565b61080d565b610a1c91949361087e6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163314610716565b610887846107db565b936109b96108eb610897836107db565b986108c37f00000000000000000000000000000000000000000000000000000000000000008583610b9b565b937f000000000000000000000000000000000000000000000000000000000000000091610b9b565b6109ac6109a361099d61099161097e61094461090f6000546001600160801b031690565b61093661092f8d6001600160a01b03166000526001602052604060002090565b5460801c90565b6001600160801b0391031690565b6109716109648c6001600160a01b03166000526001602052604060002090565b546001600160801b031690565b026001600160801b031690565b6001600160801b03633b9aca0091160490565b6001600160801b031690565b600f0b90565b600003600f0b90565b90879060010160051b0152565b60018101610a20575b50506109f36109d96000546001600160801b031690565b916001600160a01b03166000526001602052604060002090565b906001600160801b036fffffffffffffffffffffffffffffffff1983549260801b169116179055565b9190565b610ac791610ab9610a78610a73610a6e610a536109916109648a6001600160a01b03166000526001602052604060002090565b946001870160051b0194610a688651600f0b90565b90610823565b610b4c565b610ace565b610a95866001600160a01b03166000526001602052604060002090565b906001600160801b03166fffffffffffffffffffffffffffffffff19825416179055565b5190859060010160051b0152565b38806109c2565b6001600160801b0390818111610ae2571690565b608460405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e203160448201527f32382062697473000000000000000000000000000000000000000000000000006064820152fd5b60008112610b575790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b90918215610c2b576000906000199384810190811161083f5793929193905b81851115610bca57505050905090565b6001858303811c860180968160051b860135848114600014610bf157505050505050505090565b87985093809596979192939410600014610c12575050015b93929190610bba565b925093508015610c23570191610c09565b505050505090565b50505060001990565b610c8a6104cd7f00000000000000000000000000000000000000000000000000000000000000006000527f0000000000000000000000000000000000000000000000000000000000000000602052604060002090565b60801c908115610cc2576001600160a01b03166000526001602052670de0b6b3a76400006001600160801b0360406000205416020490565b505060009056fea2646970667358221220c847baff786bb5c34800a44454d37ca103526e58540cc639dfa12e82f324da3b64736f6c63430008130033a2646970667358221220d1f5066b3ef1cfef60f693b83bcc4855b3b21ad7c927f8ecc61ab68d9e4ba23f64736f6c63430008130033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000111a6d7f5ddb85776f1b6a6deabe552815559f9e0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc75350000000000000000000000000000000000000000000000000001c6bf52634000000000000000000000000000000000000000000000000000000470de4df82000
-----Decoded View---------------
Arg [0] : factory (address): 0x111A6d7f5dDb85776F1b6A6DEAbe552815559f9E
Arg [1] : vault_ (address): 0x1d0188c4B276A09366D05d6Be06aF61a73bC7535
Arg [2] : fee1e18_ (uint96): 500000000000000
Arg [3] : amp_ (int256): 1250000000000000
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 000000000000000000000000111a6d7f5ddb85776f1b6a6deabe552815559f9e
Arg [1] : 0000000000000000000000001d0188c4b276a09366d05d6be06af61a73bc7535
Arg [2] : 0000000000000000000000000000000000000000000000000001c6bf52634000
Arg [3] : 000000000000000000000000000000000000000000000000000470de4df82000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.