ERC-1155
Overview
Max Total Supply
54,824 Alphamind Perks
Holders
54,824
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
Minimal Proxy Contract for 0x0b652f3b35310eaa10205687fbdcbc4f140f0483
Contract Name:
NFTDropperCollectionClone
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.23;
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC1155/extensions/ERC1155SupplyUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC1155/extensions/ERC1155URIStorageUpgradeable.sol";
import "./contracts-upgradeable/utils/rights/TokenRightProvableUpgradeable.sol";
contract NFTDropperCollectionClone is
ERC1155URIStorageUpgradeable,
ERC1155SupplyUpgradeable,
TokenRightProvableUpgradeable,
AccessControlUpgradeable
{
error ExceedsMaxSupply();
error ExceedsMaxMintPerWallet();
error MintableWithRight();
error MissingAccessToken();
error TokenNotTransferable(uint256 tokenId);
struct TokenConfig {
address accessToken;
uint256 accessTokenId;
uint256 maxMintPerWallet;
uint256 maxSupply;
bool isSoulbound;
}
bytes32 public constant SYSTEM_ROLE = keccak256("SYSTEM_ROLE");
uint256 private _tokenIdCounter;
uint256 public maxSupply;
string public contractUri;
string public name;
string public symbol;
mapping(uint256 => TokenConfig) public configOf;
mapping(address => mapping(uint256 => uint256)) public mintPerWallet;
event DropCreated(uint256 indexed tokenId, bytes32 root, TokenConfig config);
event PermanentURI(string value, uint256 indexed id);
// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(
string memory name_,
string memory symbol_,
string memory contractUri_,
uint256 maxSupply_,
address admin_,
address system_
) external initializer {
__ERC1155URIStorage_init();
__TokenRightProvable_init();
__AccessControl_init();
name = name_;
symbol = symbol_;
contractUri = contractUri_;
maxSupply = maxSupply_;
_tokenIdCounter = 1;
_grantRole(DEFAULT_ADMIN_ROLE, admin_);
_grantRole(SYSTEM_ROLE, system_);
}
function nextTokenId() public view returns (uint256) {
return _tokenIdCounter;
}
function createDrop(bytes32 rightsRoot, string memory tokenUri, TokenConfig memory config)
public
onlyRole(SYSTEM_ROLE)
{
uint256 tokenId = _tokenIdCounter++;
if (tokenId > maxSupply) revert ExceedsMaxSupply();
if (rightsRoot != 0) _setTokenRoot(tokenId, rightsRoot);
_setURI(tokenId, tokenUri);
configOf[tokenId] = config;
emit DropCreated(tokenId, rightsRoot, config);
}
function mint(uint256 tokenId, address to) public {
if (getRoot(tokenId) != 0) revert MintableWithRight();
_checkAccessTokenAndMint(tokenId, to);
}
function mintWithRight(uint256 tokenId, address to, address right, bytes memory signature, bytes32[] memory proof)
public
{
bytes32 digest = MessageHashUtils.toEthSignedMessageHash(abi.encodePacked("address:", to));
// bytes memory message = abi.encodePacked("address:", to);
// bytes32 digest =
// keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(right))));
_spendRight(tokenId, right, digest, leaf, signature, proof);
_checkAccessTokenAndMint(tokenId, to);
}
function _checkAccessTokenAndMint(uint256 tokenId, address to) internal {
TokenConfig memory config = configOf[tokenId];
if (config.accessToken != address(0) && IERC1155(config.accessToken).balanceOf(to, config.accessTokenId) == 0) {
revert MissingAccessToken();
}
if (totalSupply(tokenId) >= configOf[tokenId].maxSupply) revert ExceedsMaxSupply();
if (mintPerWallet[to][tokenId] >= configOf[tokenId].maxMintPerWallet) revert ExceedsMaxMintPerWallet();
mintPerWallet[to][tokenId] += 1;
emit PermanentURI(uri(tokenId), tokenId);
_mint(to, tokenId, 1, "0x00");
}
function _update(address from, address to, uint256[] memory ids, uint256[] memory values)
internal
override(ERC1155Upgradeable, ERC1155SupplyUpgradeable)
{
if (from != address(0)) {
for (uint256 i = 0; i < ids.length;) {
if (configOf[ids[i]].isSoulbound) revert TokenNotTransferable(ids[i]);
unchecked {
i += 1;
}
}
}
ERC1155SupplyUpgradeable._update(from, to, ids, values);
}
function uri(uint256 tokenId)
public
view
override(ERC1155Upgradeable, ERC1155URIStorageUpgradeable)
returns (string memory)
{
return ERC1155URIStorageUpgradeable.uri(tokenId);
}
function supportsInterface(bytes4 interfaceId)
public
view
override(ERC1155Upgradeable, AccessControlUpgradeable)
returns (bool)
{
return interfaceId == type(ERC1155Upgradeable).interfaceId
|| interfaceId == type(AccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
struct AccessControlStorage {
mapping(bytes32 role => RoleData) _roles;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;
function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
assembly {
$.slot := AccessControlStorageLocation
}
}
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
function __AccessControl_init() internal onlyInitializing {
}
function __AccessControl_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
AccessControlStorage storage $ = _getAccessControlStorage();
bytes32 previousAdminRole = getRoleAdmin(role);
$._roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
if (!hasRole(role, account)) {
$._roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
if (hasRole(role, account)) {
$._roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/ERC1155Supply.sol)
pragma solidity ^0.8.20;
import {ERC1155Upgradeable} from "../ERC1155Upgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Extension of ERC1155 that adds tracking of total supply per id.
*
* Useful for scenarios where Fungible and Non-fungible tokens have to be
* clearly identified. Note: While a totalSupply of 1 might mean the
* corresponding is an NFT, there is no guarantees that no other token with the
* same id are not going to be minted.
*
* NOTE: This contract implies a global limit of 2**256 - 1 to the number of tokens
* that can be minted.
*
* CAUTION: This extension should not be added in an upgrade to an already deployed contract.
*/
abstract contract ERC1155SupplyUpgradeable is Initializable, ERC1155Upgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.ERC1155Supply
struct ERC1155SupplyStorage {
mapping(uint256 id => uint256) _totalSupply;
uint256 _totalSupplyAll;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155Supply")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC1155SupplyStorageLocation = 0x4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e2800;
function _getERC1155SupplyStorage() private pure returns (ERC1155SupplyStorage storage $) {
assembly {
$.slot := ERC1155SupplyStorageLocation
}
}
function __ERC1155Supply_init() internal onlyInitializing {
}
function __ERC1155Supply_init_unchained() internal onlyInitializing {
}
/**
* @dev Total value of tokens in with a given id.
*/
function totalSupply(uint256 id) public view virtual returns (uint256) {
ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
return $._totalSupply[id];
}
/**
* @dev Total value of tokens.
*/
function totalSupply() public view virtual returns (uint256) {
ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
return $._totalSupplyAll;
}
/**
* @dev Indicates whether any token exist with a given id, or not.
*/
function exists(uint256 id) public view virtual returns (bool) {
return totalSupply(id) > 0;
}
/**
* @dev See {ERC1155-_update}.
*/
function _update(
address from,
address to,
uint256[] memory ids,
uint256[] memory values
) internal virtual override {
ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
super._update(from, to, ids, values);
if (from == address(0)) {
uint256 totalMintValue = 0;
for (uint256 i = 0; i < ids.length; ++i) {
uint256 value = values[i];
// Overflow check required: The rest of the code assumes that totalSupply never overflows
$._totalSupply[ids[i]] += value;
totalMintValue += value;
}
// Overflow check required: The rest of the code assumes that totalSupplyAll never overflows
$._totalSupplyAll += totalMintValue;
}
if (to == address(0)) {
uint256 totalBurnValue = 0;
for (uint256 i = 0; i < ids.length; ++i) {
uint256 value = values[i];
unchecked {
// Overflow not possible: values[i] <= balanceOf(from, ids[i]) <= totalSupply(ids[i])
$._totalSupply[ids[i]] -= value;
// Overflow not possible: sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
totalBurnValue += value;
}
}
unchecked {
// Overflow not possible: totalBurnValue = sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
$._totalSupplyAll -= totalBurnValue;
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/ERC1155URIStorage.sol)
pragma solidity ^0.8.20;
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC1155Upgradeable} from "../ERC1155Upgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev ERC1155 token with storage based token URI management.
* Inspired by the ERC721URIStorage extension
*/
abstract contract ERC1155URIStorageUpgradeable is Initializable, ERC1155Upgradeable {
using Strings for uint256;
/// @custom:storage-location erc7201:openzeppelin.storage.ERC1155URIStorage
struct ERC1155URIStorageStorage {
// Optional base URI
string _baseURI;
// Optional mapping for token URIs
mapping(uint256 tokenId => string) _tokenURIs;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155URIStorage")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC1155URIStorageStorageLocation = 0x89fc852226e759c7c636cf34d732f0198fc56a54876b2374a52beb7b0c558600;
function _getERC1155URIStorageStorage() private pure returns (ERC1155URIStorageStorage storage $) {
assembly {
$.slot := ERC1155URIStorageStorageLocation
}
}
function __ERC1155URIStorage_init() internal onlyInitializing {
__ERC1155URIStorage_init_unchained();
}
function __ERC1155URIStorage_init_unchained() internal onlyInitializing {
ERC1155URIStorageStorage storage $ = _getERC1155URIStorageStorage();
$._baseURI = "";
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the concatenation of the `_baseURI`
* and the token-specific uri if the latter is set
*
* This enables the following behaviors:
*
* - if `_tokenURIs[tokenId]` is set, then the result is the concatenation
* of `_baseURI` and `_tokenURIs[tokenId]` (keep in mind that `_baseURI`
* is empty per default);
*
* - if `_tokenURIs[tokenId]` is NOT set then we fallback to `super.uri()`
* which in most cases will contain `ERC1155._uri`;
*
* - if `_tokenURIs[tokenId]` is NOT set, and if the parents do not have a
* uri value set, then the result is empty.
*/
function uri(uint256 tokenId) public view virtual override returns (string memory) {
ERC1155URIStorageStorage storage $ = _getERC1155URIStorageStorage();
string memory tokenURI = $._tokenURIs[tokenId];
// If token URI is set, concatenate base URI and tokenURI (via string.concat).
return bytes(tokenURI).length > 0 ? string.concat($._baseURI, tokenURI) : super.uri(tokenId);
}
/**
* @dev Sets `tokenURI` as the tokenURI of `tokenId`.
*/
function _setURI(uint256 tokenId, string memory tokenURI) internal virtual {
ERC1155URIStorageStorage storage $ = _getERC1155URIStorageStorage();
$._tokenURIs[tokenId] = tokenURI;
emit URI(uri(tokenId), tokenId);
}
/**
* @dev Sets `baseURI` as the `_baseURI` for all tokens
*/
function _setBaseURI(string memory baseURI) internal virtual {
ERC1155URIStorageStorage storage $ = _getERC1155URIStorageStorage();
$._baseURI = baseURI;
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.23;
import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import "../merkle-tree/InclusionProvablePerTokenUpgradeable.sol";
abstract contract TokenRightProvableUpgradeable is InclusionProvablePerTokenUpgradeable {
error RightAlreadyUsed();
error InvalidSignature();
event RightSpent(uint256 indexed tokenId, address indexed right);
/// @custom:storage-location erc7201:knobs.storage.RightProvable
struct TokenRightProvableStorage {
mapping(uint256 => mapping(address => bool)) _usedRights;
}
// keccak256(abi.encode(uint256(keccak256("knobs.storage.TokenRightProvable")) - 1)) & ~bytes32(uint256(0xff));
bytes32 private constant TokenRightProvableStorageLocation =
0x065ac7f053e585126daaa6dcd57a6d797c4a19a1a617defc16f2e9ff43993500;
function _getTokenRightProvableStorage() private pure returns (TokenRightProvableStorage storage $) {
assembly {
$.slot := TokenRightProvableStorageLocation
}
}
function __TokenRightProvable_init() internal onlyInitializing {}
function __TokenRightProvable_init_unchained() internal onlyInitializing {}
function isSpent(uint256 tokenId, address right) public view returns (bool) {
TokenRightProvableStorage storage $ = _getTokenRightProvableStorage();
return $._usedRights[tokenId][right];
}
function _spendRight(
uint256 tokenId,
address right,
bytes32 digest,
bytes32 leaf,
bytes memory signature,
bytes32[] memory proof
) internal {
_beforeSpendingRight(tokenId, right, digest, leaf, signature, proof);
_verifyProof(tokenId, leaf, proof);
if (!SignatureChecker.isValidSignatureNow(right, digest, signature)) revert InvalidSignature();
TokenRightProvableStorage storage $ = _getTokenRightProvableStorage();
if ($._usedRights[tokenId][right]) revert RightAlreadyUsed();
$._usedRights[tokenId][right] = true;
emit RightSpent(tokenId, right);
_afterSpendingRight(tokenId, right, digest, leaf, signature, proof);
}
function _beforeSpendingRight(
uint256 tokenId,
address right,
bytes32 digest,
bytes32 leaf,
bytes memory signature,
bytes32[] memory proof
) internal virtual {}
function _afterSpendingRight(
uint256 tokenId,
address right,
bytes32 digest,
bytes32 leaf,
bytes memory signature,
bytes32[] memory proof
) internal virtual {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165Upgradeable is Initializable, IERC165 {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {IERC1155Receiver} from "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";
import {IERC1155MetadataURI} from "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {ERC165Upgradeable} from "../../utils/introspection/ERC165Upgradeable.sol";
import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";
import {IERC1155Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
/// @custom:storage-location erc7201:openzeppelin.storage.ERC1155
struct ERC1155Storage {
mapping(uint256 id => mapping(address account => uint256)) _balances;
mapping(address account => mapping(address operator => bool)) _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string _uri;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC1155StorageLocation = 0x88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500;
function _getERC1155Storage() private pure returns (ERC1155Storage storage $) {
assembly {
$.slot := ERC1155StorageLocation
}
}
/**
* @dev See {_setURI}.
*/
function __ERC1155_init(string memory uri_) internal onlyInitializing {
__ERC1155_init_unchained(uri_);
}
function __ERC1155_init_unchained(string memory uri_) internal onlyInitializing {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
ERC1155Storage storage $ = _getERC1155Storage();
return $._uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
ERC1155Storage storage $ = _getERC1155Storage();
return $._balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
ERC1155Storage storage $ = _getERC1155Storage();
return $._operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
ERC1155Storage storage $ = _getERC1155Storage();
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = $._balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
$._balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
$._balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
_doSafeTransferAcceptanceCheck(operator, from, to, id, value, data);
} else {
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
ERC1155Storage storage $ = _getERC1155Storage();
$._uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
ERC1155Storage storage $ = _getERC1155Storage();
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
$._operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Performs an acceptance check by calling {IERC1155-onERC1155Received} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check by calling {IERC1155-onERC1155BatchReceived} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
/// @solidity memory-safe-assembly
assembly {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.23;
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
abstract contract InclusionProvablePerTokenUpgradeable is ContextUpgradeable {
error MerkleRootAlreadySet();
error MerkleRootInvalid();
error MerkleRootNotSet();
error MerkleProofInvalid();
event RootSet(uint256 tokenId, bytes32 root);
/// @custom:storage-location erc7201:knobs.storage.InclusionProvablePerToken
struct InclusionProvablePerTokenStorage {
mapping(uint256 => bytes32) roots;
}
// keccak256(abi.encode(uint256(keccak256("knobs.storage.InclusionProvablePerToken")) - 1)) & ~bytes32(uint256(0xff));
bytes32 private constant InclusionProvablePerTokenStorageLocation =
0x69b4c39030190451913198591553204d2a493601e929e46f0efbc6bab41fc000;
function _getInclusionProvablePerTokenStorage() private pure returns (InclusionProvablePerTokenStorage storage $) {
assembly {
$.slot := InclusionProvablePerTokenStorageLocation
}
}
function __InclusionProvablePerToken_init() internal onlyInitializing {}
function __InclusionProvablePerToken_init_unchained() internal onlyInitializing {}
function getRoot(uint256 tokenId) public view returns (bytes32) {
InclusionProvablePerTokenStorage storage $ = _getInclusionProvablePerTokenStorage();
return $.roots[tokenId];
}
function _verifyProof(uint256 tokenId, bytes32 leaf, bytes32[] memory proof) internal view {
InclusionProvablePerTokenStorage storage $ = _getInclusionProvablePerTokenStorage();
bytes32 root = $.roots[tokenId];
if (root == 0) revert MerkleRootNotSet();
if (!MerkleProof.verify(proof, getRoot(tokenId), leaf)) revert MerkleProofInvalid();
}
function _setTokenRoot(uint256 tokenId, bytes32 root) internal virtual {
InclusionProvablePerTokenStorage storage $ = _getInclusionProvablePerTokenStorage();
if (root == 0) revert MerkleRootInvalid();
if ($.roots[tokenId] != 0) revert MerkleRootAlreadySet();
$.roots[tokenId] = root;
emit RootSet(tokenId, root);
}
function _resetTokenRoot(uint256 tokenId) internal virtual {
InclusionProvablePerTokenStorage storage $ = _getInclusionProvablePerTokenStorage();
bytes32 root = $.roots[tokenId];
if (root == 0) revert MerkleRootNotSet();
delete root;
emit RootSet(tokenId, 0);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Arrays.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using StorageSlot for bytes32;
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}{
"remappings": [
"forge-std/=lib/forge-std/src/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"murky/=lib/murky/src/",
"ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
"solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"viaIR": false,
"libraries": {}
}Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"ExceedsMaxMintPerWallet","type":"error"},{"inputs":[],"name":"ExceedsMaxSupply","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"MerkleProofInvalid","type":"error"},{"inputs":[],"name":"MerkleRootAlreadySet","type":"error"},{"inputs":[],"name":"MerkleRootInvalid","type":"error"},{"inputs":[],"name":"MerkleRootNotSet","type":"error"},{"inputs":[],"name":"MintableWithRight","type":"error"},{"inputs":[],"name":"MissingAccessToken","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"RightAlreadyUsed","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"TokenNotTransferable","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"root","type":"bytes32"},{"components":[{"internalType":"address","name":"accessToken","type":"address"},{"internalType":"uint256","name":"accessTokenId","type":"uint256"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxSupply","type":"uint256"},{"internalType":"bool","name":"isSoulbound","type":"bool"}],"indexed":false,"internalType":"struct NFTDropperCollectionClone.TokenConfig","name":"config","type":"tuple"}],"name":"DropCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"PermanentURI","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"right","type":"address"}],"name":"RightSpent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"RootSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SYSTEM_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"configOf","outputs":[{"internalType":"address","name":"accessToken","type":"address"},{"internalType":"uint256","name":"accessTokenId","type":"uint256"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxSupply","type":"uint256"},{"internalType":"bool","name":"isSoulbound","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractUri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"rightsRoot","type":"bytes32"},{"internalType":"string","name":"tokenUri","type":"string"},{"components":[{"internalType":"address","name":"accessToken","type":"address"},{"internalType":"uint256","name":"accessTokenId","type":"uint256"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxSupply","type":"uint256"},{"internalType":"bool","name":"isSoulbound","type":"bool"}],"internalType":"struct NFTDropperCollectionClone.TokenConfig","name":"config","type":"tuple"}],"name":"createDrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"string","name":"contractUri_","type":"string"},{"internalType":"uint256","name":"maxSupply_","type":"uint256"},{"internalType":"address","name":"admin_","type":"address"},{"internalType":"address","name":"system_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"right","type":"address"}],"name":"isSpent","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"mintPerWallet","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"right","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"mintWithRight","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.